OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 9 — May. 2, 2005
  • pp: 3500–3505

Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers

Honglin An and Simon Fleming  »View Author Affiliations


Optics Express, Vol. 13, Issue 9, pp. 3500-3505 (2005)
http://dx.doi.org/10.1364/OPEX.13.003500


View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.

© 2005 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.6030) Materials : Silica
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.4160) Nonlinear optics : Multiharmonic generation

ToC Category:
Research Papers

History
Original Manuscript: March 15, 2005
Revised Manuscript: April 24, 2005
Published: May 2, 2005

Citation
Honglin An and Simon Fleming, "Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers," Opt. Express 13, 3500-3505 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3500


Sort:  Journal  |  Reset  

References

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, �??Large second-order nonlinearity in poled fused silica,�?? Opt. Lett. 16, 1732-1734 (1991). [CrossRef] [PubMed]
  2. P. G. Kazansky, L. Dong, and P. St. J. Russell, �??High second-order nonlinearities in poled silicate fibers,�?? Opt. Lett. 19, 701-703 (1994). [CrossRef] [PubMed]
  3. D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, �??Frozen-in electrical field in thermally poled fibers,�?? Opt. Fiber Technol. 5, 235-241 (1999). [CrossRef]
  4. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, �??Poling of silica with silver-containing electrodes,�?? Electron. Lett. 36, 1635-1636 (2000). [CrossRef]
  5. C. Corbari, O. Deparis, B. G. Klappauf, and P. G. Kazansky, �??Practical technique for measurement of second-order nonlinearity in poled glass,�?? Electron. Lett. 39, 197-198 (2003). [CrossRef]
  6. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, �??Inverse Fourier transform technique to determine second-order optical nonlinearity spatial profiles,�?? Appl. Phys. Lett. 82, 1362-1364 (2003). [CrossRef]
  7. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, �??Improved technique to determine second-order optical nonlinearity profiles using two different samples,�?? Appl. Phys. Lett. 84, 681-683 (2004). [CrossRef]
  8. W. Margulis and F. Laurell, �??Interferometric study of poled glass under etching,�?? Opt. Lett. 21, 1786-1788 (1996). [CrossRef] [PubMed]
  9. T. G. Alley and S. R. J. Brueck, �??Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,�?? Opt. Lett. 23, 1170-1172 (1998). [CrossRef]
  10. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, �??Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,�?? Appl. Phys. Lett. 83, 3623-3625 (2003). [CrossRef]
  11. H. An, S. Fleming, and G. Cox, �??Visualization of second-order nonlinear layer in thermally poled fused silica glass,�?? Appl. Phys. Lett. 85, 5819-5821 (2004). [CrossRef]
  12. T. G. Alley, S. R. J. Brueck, and R. A. Myers, �??Space charge dynamics in thermally poled fused silica,�?? J. Non-Cryst. Solids 242, 165-176 (1998). [CrossRef]
  13. M. Fokine, L. E. Nilsson, �?. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, �??Integrated fiber Mach�??Zehnder interferometer for electro-optic switching,�?? Opt. Lett. 27, 1643-1645 (2002). [CrossRef]
  14. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, �??Mechanism for thermal poling in twin-hole silicate fibers,�?? J. Opt. Soc. Am. B 19, 870-874 (2002). [CrossRef]
  15. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, �??Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,�?? Opt. Express 12, 6093-6099 (2004), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6093">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6093</a>. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited