OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 9 — May. 2, 2005
  • pp: 3535–3542

Time-domain analysis of enhanced transmission through a single subwavelength aperture

Amit Agrawal, Hua Cao, and Ajay Nahata  »View Author Affiliations


Optics Express, Vol. 13, Issue 9, pp. 3535-3542 (2005)
http://dx.doi.org/10.1364/OPEX.13.003535


View Full Text Article

Enhanced HTML    Acrobat PDF (844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have measured the enhanced transmission properties of a single subwavelength aperture surrounded by periodically spaced annular grooves using time-domain techniques. While the present measurements utilize terahertz time-domain approaches, with appropriately scaled device parameters, the general observations should be applicable to other spectral ranges. In contrast to measurements that rely on continuous wave excitation and frequency domain measurements, we are able to determine the contribution of each individual groove to the transmitted terahertz waveform. Using structures containing only a single annular groove surrounding the aperture, we find that each groove can couple a large fraction of the incident terahertz bandwidth in the form of a surface wave pulse. When multiple annular grooves surround the aperture, we observe oscillations in the time-domain waveform that are temporally delayed from the initial bipolar waveform in direct relation to the distance of the groove from the aperture. This is further demonstrated by using structures containing defects (absence of annular grooves).

© 2005 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Research Papers

History
Original Manuscript: April 26, 2005
Revised Manuscript: April 27, 2005
Published: May 2, 2005

Citation
Amit Agrawal, Hua Cao, and Ajay Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3535


Sort:  Journal  |  Reset  

References

  1. H. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163-182 (1944). [CrossRef]
  2. C.J. Bouwkamp, �??Diffraction theory,�?? Rep. Prog. Phys. 17, 35-100 (1954). [CrossRef]
  3. D.E. Grupp, H.J. Lezec, T. Thio, T.W. Ebbesen, �??Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,�?? Adv. Mater. 11, 860-862 (1999). [CrossRef]
  4. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, �??Extraordinary optical transmission through subwavelength hole arrays,�?? Nature 391, 667-669 (1998). [CrossRef]
  5. T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, T.W. Ebbesen, �??Enhanced light transmission through a single subwavelength aperture,�?? Opt. Lett. 26, 1972-1974 (2001). [CrossRef]
  6. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, F. Martin-Moreno, L.J. Garcia-Vidal, and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Science 297, 220-222 (2002). [CrossRef]
  7. T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, R.A. Linke, �??Giant optical transmission of sub-wavelength apertures: physics and applications,�?? Nanotechnology 13, 429-432 (2002). [CrossRef]
  8. A. Nahata, R.A. Linke, T. Ishi, and K. Ohashi, �??Enhanced nonlinear optical conversion using periodically nanostructured metal films,�?? Opt. Lett. 28, 423-425 (2003). [CrossRef] [PubMed]
  9. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040-2042 (2004). [CrossRef]
  10. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694</a>. [CrossRef] [PubMed]
  11. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629</a>. [CrossRef] [PubMed]
  12. A.P. Hibbins, J.R. Sambles, and C.R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661-4663 (2002). [CrossRef]
  13. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, and C.R. Lawrence, �??Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,�?? J. Opt. A: Pure Appl. Opt. 7, S152-S158 (2005). [CrossRef]
  14. S.S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,�?? Appl. Phys. Lett. 85, 1098-2000 (2004). [CrossRef]
  15. H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13, 763-769 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763</a>. [CrossRef] [PubMed]
  16. F. J. Garcýa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, �??Focusing light with a single subwavelength aperture flanked by surface corrugations,�?? Appl. Phys. Lett. 83, 2000-2002 (2003). [CrossRef]
  17. L. Martin-Moreno, F.J. Garcýa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, �??Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,�?? Phys. Rev. Lett. 90, 167401/1-4 (2003). [CrossRef]
  18. M.M.J. Treacy, �??Dynamical diffraction in metallic optical gratings,�?? Appl. Phys. Lett. 75, 606-608 (1999). [CrossRef]
  19. Q. Cao and P. Lalanne, �??Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,�?? Phys. Rev. Lett. 88, 057403/1-4 (2002). [CrossRef]
  20. D. Grischkowsky, in Frontiers in Nonlinear Optics, edited by H. Walther, N. Koroteev, and M.O. Scully (Institute of Physics Publishing, Philadelphia, 1992) and references therein.
  21. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664</a> [CrossRef] [PubMed]
  22. J. Gomez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J.A. Sanchez-Gil, �??Propagation of surface plasmon polaritons on semiconductor gratings,�?? Phys. Rev. Lett. 93, 256804/1-4 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited