OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 1 — Jan. 9, 2006
  • pp: 248–253

High quality buried waveguides in stoichiometric LiTaO3 for nonlinear frequency conversion

M. Marangoni, M. Lobino, R. Ramponi, E. Cianci, and V. Foglietti  »View Author Affiliations

Optics Express, Vol. 14, Issue 1, pp. 248-253 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-quality buried optical-waveguides were fabricated by reverse-proton-exchange in periodically-poled stoichiometric lithium tantalate. Experimental results show excellent fiber-mode matching, losses below 0.3 dB/cm and almost non-critical conditions for a quasi-phase-matched second-harmonic generation process from telecom wavelengths. The interaction length of 2.5 cm is the highest so far reported for lithium tantalate waveguides.

© 2006 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.4320) Optical devices : Nonlinear optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Nonlinear Optics

M. Marangoni, M. Lobino, R. Ramponi, E. Cianci, and V. Foglietti, "High quality buried waveguides in stoichiometric LiTaO3 for nonlinear frequency conversion," Opt. Express 14, 248-253 (2006)

Sort:  Journal  |  Reset  


  1. M. L. Bortz, S. J. Field. , M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, "Noncritical quasi-phasematched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide," IEEE Trans. Q. Electron. 30, 2953-2960 (1994). [CrossRef]
  2. S. Yi, S. Shin, Y Jin, and Y, Son, "Second harmonic generation in a LiTaO3 waveguide domain-inverted by proton exchange and masked heat treatment," Appl. Phys. Lett. 68, 2493-2495 (1996). [CrossRef]
  3. K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, "Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation," J. Appl. Phys. 70, 1947-1951 (1991). [CrossRef]
  4. M. Houé, and P. D. Towsend, "An introduction to methods of periodic poling for second-harmonic generation," J. Phys. D 28, 1747-1763 (1995). [CrossRef]
  5. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett. 27, 179-181 (2002). [CrossRef]
  6. M. L. Bortz, and M. M. Fejer, "Annealed proton-exchanged LiNbO3 waveguides," Opt. Lett. 16, 1844-1846 (1991). [CrossRef] [PubMed]
  7. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," IEEE J. Lightwave Technol. 5, 700-708 (1987). [CrossRef]
  8. M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photonics Technol. Lett. 11, 653-655 (1999). [CrossRef]
  9. T. Pertsch, R. Iwanow, R. Schiek, G. I. Stegeman, U. Peschel, F. Lederer, Y. H. Min, and W. Sohler, "Spatial ultrafast switching and frequency conversion in lithium niobate waveguide arrays," Opt. Lett. 30, 177-179 (2005). [CrossRef] [PubMed]
  10. B. Agate, E. U. Rafailov, M. Sibett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, "Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal," Opt. Lett. 28, 1963-1965 (2003). [CrossRef] [PubMed]
  11. K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, and M. Imaeda, "Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgOLiNbO3," Opt. Lett. 28, 1344-1346 (2003). [CrossRef] [PubMed]
  12. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan and T. E. Mitchell, "Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3," Appl. Phys. Lett. 73, 3073-3075 (1998). [CrossRef]
  13. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa and K. Kitamura, "Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3, " Opt. Lett. 25, 651-653 (2000). [CrossRef]
  14. G. Marcus, A. Zigler, D. Eger, A. Bruner, and A. Englander, "Generation of a high-energy ultrawideband chirped source in periodically poled LiTaO3," J. Opt. Soc. Am. B, 22, 620-622 (2005). [CrossRef]
  15. M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, "Reverse-proton-exchange in stoichiometric lithium tantalate," Opt. Express 12,. 2754-2761 (2004). [CrossRef] [PubMed]
  16. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-27 (2001). [CrossRef]
  17. J. Olivares and J. M. Cabrera, "Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides," Appl. Phys. Lett. 62, 2468-2471 (1993). [CrossRef]
  18. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa and K. Kitamura, "Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals," Jpn. J. Appl. Phys. 41, 465-467 (2002). [CrossRef]
  19. M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, K. Kitamura, "Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,"Opt. Lett., accepted for publication. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited