OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 1 — Jan. 9, 2006
  • pp: 377–386

Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab

Toshitsugu Uesugi, Bong-Shik Song, Takashi Asano, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 14, Issue 1, pp. 377-386 (2006)
http://dx.doi.org/10.1364/OPEX.14.000377


View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the characteristics of an ultra-high-Q photonic nanocavity (Q = ~230,000 and modal volume = ~1.2 cubic wavelengths) at various input light powers. The cavity characteristics were red-shifted as the input power increased. This nonlinearity could be explained by coupled-mode theory, taking into account two-photon absorption, the associated free-carrier absorption, plasma effect, thermo-optic effect, and a Kerr effect. Nonlinear cavity characteristics were observed at an extremely low input light power of 10 μW. We confirmed that these low-power nonlinear optical effects could be attributed to the ultra-high Q factor of the nanocavity.

© 2006 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.5750) Optical devices : Resonators

ToC Category:
Photonic Crystals

Citation
Toshitsugu Uesugi, Bong-Shik Song, Takashi Asano, and Susumu Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-377


Sort:  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  3. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  4. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003). [CrossRef]
  5. T. Asano, W. Kunishi, M. Nakamura, B. S. Song, and S. Noda, "Optical nonlinear phenomenon in point-defect cavity in two-dimensional photonic crystal slab," Ext. Abstr. 65th Meet. Jpn. Soc. Appl. Phys. 65, 942 (2004).
  6. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005), [CrossRef] [PubMed]
  7. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005) [CrossRef] [PubMed]
  8. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 83, 1512-1514 (2003). [CrossRef]
  9. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, "Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 79, 2690-2692 (2001). [CrossRef]
  10. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  11. T. Asano, W. Kunishi, M. Nakamura, B. S. Song, and S. Noda, "Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab," Electron. Lett. 41, 37-38 (2005). [CrossRef]
  12. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004). [CrossRef] [PubMed]
  13. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  14. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  15. K. H. Hellwege, O. Madelung, M. Schultz, and H. Weiss, LANDORT-BORNSTEIN New Series 17 (Springer-Verlag Berlin, Heidelberg, New York, 1982).
  16. G. Cocorullo, F. G. Della Corte, and I. Rendina, "Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm," Appl. Phys. Lett. 74, 3338-3340 (1999). [CrossRef]
  17. We confirmed that the FCA exceeded the TPA when we used the different value of free-carriers relaxation time in Ref. 6 (where it is described as free-carriers cross-section) for the calculation. However, the cavity characteristics remained similar, because the contributions of both the TPA and the FCA to the cavity characteristics occurred via a thermo-optic effect. It was therefore difficult to experimentally distinguish between these factors in the current work. We think that the TPA was larger than the FCA in this case because FCA is optical absorption consequent from TPA and also because free-carriers recombination time is as short as 0.5 ns.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited