OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 10 — May. 15, 2006
  • pp: 4221–4236

Polarization-resolved spatial characterization of birefringent Fiber Bragg Gratings

Ole Henrik Waagaard  »View Author Affiliations


Optics Express, Vol. 14, Issue 10, pp. 4221-4236 (2006)
http://dx.doi.org/10.1364/OE.14.004221


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method that enables polarization-resolved spatial characterization of fiber Bragg gratings is presented. The polarization-resolved reflection spectrum of the grating is measured using optical-frequency domain reflectometry. A polarization-resolved layer-peeling algorithm is used to compute the spatial profile, including the local birefringence and the local polarization-dependent index modulation. A strain-tuned distributed feedback fiber laser is used as source. With closed-loop control of the laser sweep, 0.14 % maximum deviation from constant sweep rate is achieved, which is much better than commercial available tunable lasers. The polarization of the source is modulated synchronous with the laser sweep by passing the light through a three-armed Mach-Zehnder-type interferometer having different retardation. The method is used to investigate the polarization-dependence of the index modulation amplitude of a fiber Bragg grating.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.1480) Optical devices : Bragg reflectors
(260.1440) Physical optics : Birefringence

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 9, 2006
Revised Manuscript: April 27, 2006
Manuscript Accepted: April 28, 2006
Published: May 15, 2006

Citation
Ole H. Waagaard, "Polarization-resolved spatial characterization of birefringent Fiber Bragg Gratings," Opt. Express 14, 4221-4236 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4221


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D.-W. Huang and C.-C. Yang, "Reconstruction of fiber grating refractive-index profiles from complex Bragg reflection spectra," Appl. Opt. 38, 4494-4498 (1999). [CrossRef]
  2. S. Keren and M. Horowitz, "Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses," Opt. Lett. 26, 328-330 (2001). [CrossRef]
  3. P. Giaccari, H. Limberger, and R. Salathe, "Local coupling-coefficient characterization in fiber Bragg gratings," Opt. Lett. 28, 598-600 (2003). [CrossRef] [PubMed]
  4. D. Sandel, R. Noe, G. Heise, and B. Borchert, "Optical network analysis and longitunal structure characterization of fiber Bragg gratings," IEEE J. Lightwave Technol. 16, 2435-2442 (1998). [CrossRef]
  5. O. Waagaard, E. Rønnekleiv, and J.T. Kringlebotn, "Spatial characterization of strong fiber Bragg gatings," in Proceedings of SPIE, Fiber-Based Components Fabrication, Testing, and Connectorization, V. Pruneri, R. Dahlgren, and G. Sanger, eds., vol. 4943, pp. 16-24 (2003).
  6. O. Waagaard, "Spatial characterization of strong fiber Bragg gratings using thermal chirp and optical-frequency-domain reflectometry," IEEE J. Lightwave Technol. 23, 909-914 (2005). [CrossRef]
  7. W. Eickhoff and R. Ulrich, "Optical frequency-domain reflectometry in single-mode fiber," Applied Physics Letters 39, 693-695 (1981). [CrossRef]
  8. U. Glombitza and E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides," IEEE J. Lightwave Technol. 11, 1377-1384 (1993). [CrossRef]
  9. J. von der Weid, R. Passy, G. Mussi, and N. Gisin, "On the characterization of optical network componenents with optical frequency domain reflectometry," IEEE J. Lightwave Technol. 15, 1131-1141 (1997). [CrossRef]
  10. G. Meltz and W. W. Morey, "Bragg grating formation and germanosilicate fiber photosensitivity," in International workshop on photoinduced self-organization effects in optical fiber, Proc. Soc. Photo-Opt.Instrum. Eng. 1516, 185-199 (1991).
  11. K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, "Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters," Electron. Lett. 27, 1548-1550 (1991). [CrossRef]
  12. T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. B 11, 2100-2105 (1994). [CrossRef]
  13. S. Pereira, J. E. Sipe, R. E. Slusher, and S. Spalter, "Enhanced and suppressed birefringence in fiber Bragg gratings," J. Opt. Soc. Am. B 19, 1509-1515 (2002). [CrossRef]
  14. B. Soller, D. Gifford, M. Wolfe, and M. Foggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Express 13, 666-674 (2005). [CrossRef] [PubMed]
  15. O. Waagaard and J. Skaar, "Synthesis of birefringent reflective gratings," J. Opt. Soc. Am. A 21, 1207-1220 (2004). [CrossRef]
  16. Luna Technologies white paper, "Optical vector network analyzer for single scan measurements of loss, group delay and polarization mode dispersion," http://www.lunatechnologies.com/products/ova/files/OVAwhitePaper.pdf (Luna Technologies, 2005).
  17. Agilent Technologies white paper, "Agilent 81910A Photonic All-Parameter Analyzer User Guide," http://www.home.agilent.com/agilent/facet.jspx?kt=1&cc=US&lc=eng&k=81910 (Agilent, 2005).
  18. R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999). [CrossRef]
  19. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001). [CrossRef]
  20. J. Skaar and O. H. Waagaard, "Design and characterization of finite length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003). [CrossRef]
  21. R. Azzam and N. Bashara, Ellipsometry and polarized light (North-Holland, 1977).
  22. E. Rønnekleiv, "Frequency and Intensity Noise of Single Frequency Fiber Bragg Grating Lasers," Opt. Fiber Technol. 7, 206-235 (2001). [CrossRef]
  23. P. Oberson, B. Hutter, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, "Optical frequency domain reflectometry with a narrow linwidth fiber laser," IEEE Photon. Technol. Lett. 12, 867-869 (2000). [CrossRef]
  24. S. Kakuma, K. Ohmura, and R. Ohba, "Improved uncertainty of optical frequency domain reflectometry based length measurement by linearizing the frequency chirping of a laser diode," Opt. Rev. 10, 182-183 (2003). [CrossRef]
  25. A. Asseh, H. Storøy, B. Sahlgren, S. Sandgren, and R. Stubbe, "A writing technique for long fiber bragg gratings with complex reflectivity profiles," IEEE J. Lightwave Technol. 15, 1419-1423 (1997). [CrossRef]
  26. F. Kherbouche and B. Poumellec, "UV-induced stress fields during Bragg grating inscription in optical fibers," J. Opt. A 3, 429-439 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited