OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 10 — May. 15, 2006
  • pp: 4316–4327

Optical frequency synthesis from a cryogenic microwave sapphire oscillator

J. J. McFerran, S. T. Dawkins, P. L. Stanwix, M. E. Tobar, and A. N. Luiten  »View Author Affiliations

Optics Express, Vol. 14, Issue 10, pp. 4316-4327 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an optical frequency comb with fractional frequency instability of ≳2×10-14 at measurement times near 1 s, when the 10th harmonic of the comb spacing is controlled by a liquid helium cooled microwave sapphire oscillator. The frequency instability of the comb is estimated by comparing it to a cavity-stabilized optical oscillator. The less conventional approach of synthesizing low-noise optical signals from a microwave source is relevant when a laboratory has microwave sources with frequency stability superior to their optical counterparts. We describe the influence of high frequency environmental noise and how it impacts the phase-stabilized frequency comb performance at integration times less than 1 s.

© 2006 Optical Society of America

OCIS Codes
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 24, 2006
Revised Manuscript: April 27, 2006
Manuscript Accepted: May 5, 2006
Published: May 15, 2006

J. J. McFerran, S. T. Dawkins, P. L. Stanwix, M. E. Tobar, and A. N. Luiten, "Optical frequency synthesis from a cryogenic microwave sapphire oscillator," Opt. Express 14, 4316-4327 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Th. Udem, J. Reichert, R. Holzwarth, T.W. H¨ansch, "Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-71 (1999) [CrossRef]
  2. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzworth, Th. Udem, T.W. H¨ansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102 (2000) [CrossRef] [PubMed]
  3. R. Holzwarth, Th. Udem, T. W. H¨ansch, J. C. Knight, W. J. Wadsworth, P. St J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264 (2000) [CrossRef] [PubMed]
  4. L. Hollberg, C.W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, "Optical frequency standards and measurements," IEEE J. Quantum Electron. 37, 1502-1513 (2001) [CrossRef]
  5. Th. Udem, S. A. Diddams, K. R. Vogel, C.W. Oates, E. A. Curtis,W. D. Lee,W. M. Itano, R. E. Drullinger, J. C. Berquist, L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-9 (2001). [CrossRef] [PubMed]
  6. V. Gerginov, K Calkins, C. E. Tanner, S. Diddams, A. Bartels, L. Hollberg, "Optical frequency measurements of 6s 2S1/2 −6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb," Phys. Rev. A 70, 042505 (2004). [CrossRef]
  7. C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, L. Hollberg, "Observation and absolute frequency measurements of the 1S0 −3 P0 optical clock transition in neutral ytterbium," Phys. Rev. Lett. 95, 083003 (2005). [CrossRef] [PubMed]
  8. H. Schnatz, B. Lipphardt, C. Degenhardt, E Peik, T. Schneider, U. Sterr, and C. Tamm, "Optical frequency measurements using fs-comb generators," IEEE Trans. Instrum. Meas. 54, 750-753 (2005). [CrossRef]
  9. V. Gerginov, K. Calkins, C.E. Tanner, J.J. McFerran, S. Diddams, A. Bartels, L. Hollberg, "Optical frequency measurements of 6s 2S1/2 −6p 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant," Phys. Rev. A 73, 035601 (2006). [CrossRef]
  10. A. Marian, M. C. Stowe, J.R. Lawall, D. Felinto, J. Ye, "United time-frequency spectroscopy for dynamics and global structure," Science 306, 2063 (2004). [CrossRef] [PubMed]
  11. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, L. Hollberg, "High-resolution spectroscopy with a femtosecond laser frequency comb," Opt. Lett. 30, 1734-1736 (2005). [CrossRef] [PubMed]
  12. A. Marian, M. C. Stowe, D. Felinto, and J. Ye, "Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics," Phys. Rev. Lett. 95, 023001 (2005). [CrossRef] [PubMed]
  13. D. Aumiler, T. Ban, H. Skenderovi, and G. PichlerVelocity selective optical pumping of Rb hyperfine lines induced by a train of femtosecond pulses Phys.Rev. Lett. 95, 233001 (2005). [CrossRef] [PubMed]
  14. E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Analysis of noise mechansims limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Top. Quantum Electron. 9, 1059-1065 (2003). [CrossRef]
  15. J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 650-1 (2005). [CrossRef]
  16. A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist,W.H. Oskay, and L. Hollberg, "Femtosecondlaser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 30, 667-9 (2005). [CrossRef] [PubMed]
  17. A. Bartels, S.A. Diddams, T.M. Ramond and L. Hollberg, "Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator," Opt. Lett. 28, 663-5 (2003). [CrossRef] [PubMed]
  18. C. Daussy, O. Lopez, A. Amy-Klien, A Goncharov, M. Guinet, C. Chardonet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar and A.N. Luiten, "Long distance frequency diseemination with a resolution of 10−17," Phys. Rev. Lett. 94, 203904 (2005). [CrossRef] [PubMed]
  19. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, "Visible lasers with subhertz linewidths," Phys. Rev. Lett. 82, 3799-3802 (1999). [CrossRef]
  20. Ch. Salomon, D. Hills, J.L. Hall, "Laser stabilization at the mHz-level," J. Opt. Soc. Am. B 51576-1587, 1988 [CrossRef]
  21. J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, "Optical frequency standard based on cold Ca atoms," IEEE Trans. Instrum. Meas. 52, 250- 4 (2003). [CrossRef]
  22. A. N. Luiten, A. G. Mann, M. Costa, and D. G. Blair, "Power Stabilized Exceptionally High Stability Cryogenic Sapphire Resonator Oscillator," IEEE Trans. Instrum. Meas. 44, 132-135 (1995). [CrossRef]
  23. S. Chang, A. G. Mann, and A. N. Luiten, "Improved cryogenic sapphire oscillator with exceptionally high frequency stability," Electron. Lett. 36, 480-481 (2000). [CrossRef]
  24. J. D. Jost, J. L. Hall, and J. Ye, "Continuously tunable, precise, single frequency optical signal generator," Opt. Express 10, 515 (2002). [PubMed]
  25. A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair and M. J. Buckingham, "A very high stability sapphire loaded superconducting cavity oscillator," Physica B 165, 145-146 (1990). [CrossRef]
  26. A.G. Mann, "Ultrastable cryogenic microwave oscillators" in Frequency Measurement and Control: Advanced Techniques and Future Trends, A.N. Luiten, ed. (Springer, Berlin, 2001), pp.37-64
  27. M. Bregant, G. Cantatore, F, Della Valle, G, Ruoso and G, Zavattini, "Frequency locking to a high-finesse Fabry-Perot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator," Rev. Sci. Instrum. 73, 4142-4 (2002). [CrossRef]
  28. J. J. McFerran, M. Maric and A. N. Luiten, "Efficient detection and control of the offset frequency in a selfreferencing optical frequency synthesizer," App. Phys. B 79, 39-44, (2004). [CrossRef]
  29. A. Bartels, T. Dekorsy and H. Kurz, "Femtosecond Ti:sapphire ring laser with a 2 GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-8 (1999). [CrossRef]
  30. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, Jr.,W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, "Characterization of frequency stability," IEEE Trans. Instrum. Meas. 20, 105-120 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited