OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 10 — May. 15, 2006
  • pp: 4403–4411

In vivo optical frequency domain imaging of human retina and choroid

Edward C. W. Lee, Johannes F. de Boer, Mircea Mujat, Hyungsik Lim, and Seok H. Yun  »View Author Affiliations

Optics Express, Vol. 14, Issue 10, pp. 4403-4411 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical frequency domain imaging (OFDI) using swept laser sources is an emerging second-generation method for optical coherence tomography (OCT). Despite the widespread use of conventional OCT for retinal disease diagnostics, until now imaging the posterior eye segment with OFDI has not been possible. Here we report the development of a highperformance swept laser at 1050 nm and an ophthalmic OFDI system that offers an A-line rate of 18.8 kHz, sensitivity of >92 dB over a depth range of 2.4 mm with an optical exposure level of 550 µW, and deep penetration into the choroid. Using these new technologies, we demonstrate comprehensive human retina, optic disc, and choroid imaging in vivo. This advance enables us to view choroidal vasculature in vivo without intravenous injection of fluorescent dyes and may provide a useful tool for evaluating choroidal as well as retinal diseases.

© 2006 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3600) Lasers and laser optics : Lasers, tunable
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 7, 2006
Revised Manuscript: April 25, 2006
Manuscript Accepted: April 27, 2006
Published: May 15, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Edward C. Lee, Johannes F. de Boer, Mircea Mujat, Hyungsik Lim, and Seok H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  3. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), [CrossRef] [PubMed]
  4. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), [CrossRef] [PubMed]
  5. H. Barfuss, and E. Brinkmeyer, "Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989). [CrossRef]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, M. Shishkov, W. Y. Oh, and B. E. Bouma, "Catheter-based optical frequency domain imaging at 36 frames per second," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 5690-16(San Jose, CA, 2005).
  7. B. J. Vakoc, S. H. Yun, M. S. Shishkov, W. Oh, J. A. Evans, N. S. Nishioka, B. E. Bouma, and G. J. Tearney, "Comprehensive microscopy of the esophagus using optical frequency domain imaging," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 6082-13(San Jose, CA, 2006).
  8. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005). [CrossRef] [PubMed]
  9. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef] [PubMed]
  10. J. Zhang, and Z. P. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005). [CrossRef] [PubMed]
  11. M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed Opt 10, 44009 (2005). [CrossRef] [PubMed]
  12. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  13. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography of the Human Retina," Arch. Opthalmol. 113, 325-332 (1995). [CrossRef]
  14. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of Macular Diseases with Optical Coherence Tomography," Ophthalmology 102, 217-229 (1995). [PubMed]
  15. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). [CrossRef] [PubMed]
  16. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bunting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd : Glass laser and nonlinear fiber," Opt. Express 11, 3290-3297 (2003). [CrossRef] [PubMed]
  17. H. Lim, Y. Jiang, Y. M. Wang, Y. C. Huang, Z. P. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005). [CrossRef] [PubMed]
  18. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  19. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  20. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004). [CrossRef] [PubMed]
  21. M. V. Shramenko, E. V. Andreeva, D. S. Mamedov, V. R. Shidlovski, and S. D. Yakubovich, "NIR semiconductor laser with fast broadband tuning," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 6079-42(2006).
  22. F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, "Swept-Wavelength Source for Optical Coherence Tomography in the 1 µm Range," in European Congress on Biomedical Optics (ECBO)(Munich, Germany, 12-16 June 2005).
  23. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003). [CrossRef] [PubMed]
  24. B. Cense, H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004). [CrossRef] [PubMed]
  25. American National Standards Institute, American national standard for safe use of lasers z136.1 (American National Standards Institute, Orlando, FL, 2000).
  26. D. J. Segelstein, The complex refractive index of water (University of Missouri-Kansas City, 1981).
  27. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). [CrossRef] [PubMed]
  28. S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005). [CrossRef] [PubMed]
  29. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005). [CrossRef] [PubMed]
  30. V. Poukens, B. J. Glasgow, and J. L. Demer, "Nonvascular contractile cells in sclera and choroid of humans and monkeys," Invest. Ophthalmol. Visual Sci. 39, 1765-1774 (1998).
  31. D. V. Alfaro, P. E. Liggett, W. F. Mieler, H. Quiroz-Mercado, R. D. Jager, and Y. Tano, Age-related macular degneration: a comprehensive textbook (Lippincott Williams & Wilkins, Philadelphia, PA, 2006).
  32. F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, "Monochromatic Ophthalmoscopy and Fundus Photography - Normal Fundus," Arch. Opthalmol. 95, 861-868 (1977). [CrossRef]
  33. R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal Scanning Laser Ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987). [CrossRef] [PubMed]
  34. F. G. Holz, C. Bellmann, K. Rohrschneider, R. O. W. Burk, and H. E. Volcker, "Simultaneous confocal scanning laser fluorescein and indocyanine green angiography," Am. J. Opthalmol. 125, 227-236 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (11345 KB)     
» Media 2: MOV (2417 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited