OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4668–4674

A simple three dimensional wide-angle beam propagation method

Changbao Ma and Edward Van Keuren  »View Author Affiliations

Optics Express, Vol. 14, Issue 11, pp. 4668-4674 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(350.5500) Other areas of optics : Propagation

ToC Category:
Integrated Optics

Original Manuscript: March 31, 2006
Revised Manuscript: May 12, 2006
Manuscript Accepted: May 15, 2006
Published: May 29, 2006

Changbao Ma and Edward Van Keuren, "A simple three dimensional wide-angle beam propagation method," Opt. Express 14, 4668-4674 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Feit and J. A. Fleck, Jr., "Light propagation in graded-index optical fibers," Appl. Opt. 17, 3990-3998 (1978). [CrossRef] [PubMed]
  2. D. Yevick, "A guide to electric field propagation techniques for guided-wave optics," Opt. Quantum Electron. 26, S185-S197 (1994). [CrossRef]
  3. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000). [CrossRef]
  4. J. Van Roey, J. van der Donk, and P. E. Lagasse, "Beam-propagation method: analysis and assessment," J. Opt. Soc. Am. 71, 803-810 (1981). [CrossRef]
  5. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical recipes: The art of scientific computing, (Cambridge University Press, New York, 1986).
  6. G. R. Hadley, "Transparent boundary condition for beam propagation," Opt. Lett. 16, 624-626 (1991). [CrossRef] [PubMed]
  7. Y. Chung and N. Dagli, "Assessment of finite difference beam propagation," Opt. Lett. 26, 1335-1339 (1990).
  8. M. D. Feit and J. A. Fleck, Jr., "Analysis of rib waveguides and couplers by the propagation method," J. Opt. Soc. Am. A 7, 73-79 (1990). [CrossRef]
  9. C. Vassallo, "Reformulation for the beam-propagation method," J. Opt. Soc. Am. A 10, 2208-2216 (1993). [CrossRef]
  10. J. Gerdes and R. Pregla, "Beam-propagation algorithm based on the method of lines," J. Opt. Soc. Amer. A 8, 389-394 (1991). [CrossRef]
  11. R. P. Ratowsky and J. A. Fleck, Jr., "Accurate numerical solution of the Helmholtz equation by iterative Lanczos reduction," Opt. Lett. 16, 787-789 (1991). [CrossRef] [PubMed]
  12. P.-C. Lee, D. Schulz, and E. Voges, "Three-dimensional finite difference beam propagation algorithms for photonic devices," J. Lightwave Technol. 10, 1832-1838 (1992). [CrossRef]
  13. P.-C. Lee and E. Voges, "Three-dimensional semi-vectorial wave-angle beam propagation method," J. Lightwave Technol. 12, 215-225 (1994). [CrossRef]
  14. A. Sharma and A. Agrawal, "New method for nonparaxial beam propagation," J. Opt. Soc. Am. A 21, 1082-1087 (2004). [CrossRef]
  15. S. L. Chui and Y. Y. Lu, "Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner," J. Opt. Soc. Am. A 21, 420-425 (2004). [CrossRef]
  16. G. R. Hadley, "Wide-angle beam propagation using Padé approximant operators," Opt. Lett. 17, 1426-1428 (1992). [CrossRef] [PubMed]
  17. G. R. Hadley, "Multistep method for wide-angle beam propagation," Opt. Lett. 17, 1743-1745 (1992). [CrossRef] [PubMed]
  18. H. J. W. M. Hoekstra, G. J. M. Krijnen and P. V. Lambeck, "On the accuracy of the finite difference method for applications in beam propagating techniques," Opt. Commun. 94, 506-508 (1992). [CrossRef]
  19. Z. Ju, J. Fu and E. Feng, "A simple wide-angle beam-propagation method for integrated optics," Microwave Opt. Technol. Lett. 14, 345-347 (1997). [CrossRef]
  20. J. Yamauchi, J. Shibayama, O. Saito, O. Uchiyama and H. Nakano, "Improved finite-difference beam-propagation method based on the generalized Douglas scheme and its application to semivectorial analysis," J. Lightwave Technol. 14, 2401-2406 (1996). [CrossRef]
  21. S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, "Novel beam propagation algorithms for tapered optical structures," J. Lightwave Technol. 17, 2379-2388 (1999). [CrossRef]
  22. Y. P. Chiou and H. C. Chang, "Beam-propagation method for analysis of z-dependent structures that uses a local oblique coordinate system," Opt. Lett. 23, 998-1000 (1998). [CrossRef]
  23. D. Z. Djurdjevic, T. M. Benson,  et al, "Fast and accurate analysis of 3-D curved optical waveguide couplers," J. Lightwave Technol. 22, 2333-2340 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited