OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4786–4799

Ultrabroadband parametric generation and wavelength conversion in silicon waveguides

Qiang Lin, Jidong Zhang, Philippe M. Fauchet, and Govind P. Agrawal  »View Author Affiliations


Optics Express, Vol. 14, Issue 11, pp. 4786-4799 (2006)
http://dx.doi.org/10.1364/OE.14.004786


View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that ultrabroadband parametric generation and wavelength conversion can be realized in silicon waveguides in the wavelength region near 1550 nm by tailoring their zero-dispersion wavelength and launching pump wave close to this wavelength. We quantify the impact of two-photon absorption, free-carrier generation, and linear losses on the process of parametric generation and show that it is difficult to realize a net signal gain and transparent wavelength conversion with a continuous-wave pump. By investigating the transient dynamics of the four-wave mixing process initiated with a pulsed pump, we show that the instantaneous nature of electronic response enables highly efficient parametric amplification and wavelength conversion for pump pulses as wide as 1 ns. We also discuss the dual-pump configuration and show that its use permits multiband operation with uniform efficiency over a broad spectral region extending over 300 nm.

© 2006 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 31, 2006
Revised Manuscript: May 11, 2006
Manuscript Accepted: May 16, 2006
Published: May 29, 2006

Citation
Qiang Lin, Jidong Zhang, Philippe M. Fauchet, and Govind P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, A. L. Gaeta, "All optical switching on a silicon chip," Opt. Lett. 29, 2867-2869 (2004). [CrossRef]
  2. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005). [CrossRef] [PubMed]
  3. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003). [CrossRef] [PubMed]
  4. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J.  McNab, and Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713 (2004). [CrossRef] [PubMed]
  5. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261 (2004). [CrossRef] [PubMed]
  6. Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides," Opt. Express 12, 4437 (2004). [CrossRef] [PubMed]
  7. V. Raghunathan, O. Boyraz, and B. Jalali, "20 dB on-off Raman amplification in silicon waveguides," Proc. CLEO,  1, 349-351 (2005).
  8. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  9. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Anti-stokes Raman conversion in silicon waveguides," Opt. Express 11, 2862-2872 (2003). [CrossRef] [PubMed]
  10. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," J. Lightwave Technol. 23, 2094-2102 (2005). [CrossRef]
  11. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005). [CrossRef] [PubMed]
  12. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). [CrossRef] [PubMed]
  13. H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006). [CrossRef] [PubMed]
  14. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2003). [CrossRef]
  15. H. H. Li, "Refractive-index of silicon and germanium and its wavelength and temperature derivatives," J. Phys. Chem. Ref. Data,  9, 561-658 (1980). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, Boston, 2001).
  17. L. Yin, Q. Lin, and G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006). [CrossRef] [PubMed]
  18. P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A818 (1965). [CrossRef]
  19. Y. R. Shen and N. Bloembergen, "Theory of stimulated Brillouin and Raman scattering," Phys. Rev. 137, A1787-A1805 (1965). [CrossRef]
  20. R. Loudon, "The Raman effect in crystals," Adv. in Phys. 50, 813-864 (2001). [CrossRef]
  21. C. HeadleyIII and G. P. Agrawal, "Unified description of ultrafast stimulated Raman scattering in optical fibers," J. Opt. Soc. Am. B 13, 2170-2177 (1996). [CrossRef]
  22. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002). [CrossRef]
  23. J. J. Wynne, "Optical third-order mixing in GaAs, Ge, Si, and InAs," Phys. Rev. 178, 1295 (1969). [CrossRef]
  24. D. J. Moss, H. M. van Driel, and J. E. Sipe, "Dispersion in the anisotropy of optical third-harmonic generation in silicon," Opt. Lett. 14, 57 (1989). [CrossRef] [PubMed]
  25. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004). [CrossRef] [PubMed]
  26. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115 (2005). [CrossRef]
  27. X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum. Electron. 42, 160-170 (2006). [CrossRef]
  28. M. E. Marhic, N. Kagi, T. K. Chang, and L. G. Kazovsky, "Broadband fiber optical parametric amplifiers," Opt. Lett. 21, 573-575 (1996). [CrossRef] [PubMed]
  29. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, "Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra," Opt. Lett. 21, 1354-1356 (1996). [CrossRef] [PubMed]
  30. C. J. McKinstrie and S. Radic, "Parametric amplifiers driven by two pump waves with dissimilar frequencies," Opt. Lett. 27, 1138 (2002). [CrossRef]
  31. F. Yaman, Q. Lin, and G. P. Agrawal, in Guided Wave Optical Components and Devices, B. P. Pal, Ed. (Academic Press, Boston, 2005), Chap. 7.
  32. Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, "40-Gb/s optical switching and wavelength multicasting in a two-pump parametric device," IEEE Photon. Technol. Lett. 17, 2376-2378 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited