OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4800–4807

Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers

Hui Su, Piotr Kondratko, and Shun Lien Chuang  »View Author Affiliations

Optics Express, Vol. 14, Issue 11, pp. 4800-4807 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate variable optical delay of a microwave modulated optical beam in semiconductor optical amplifier/absorber waveguides with population oscillation (PO) and nearly degenerate four-wave-mixing (NDFWM) effects. An optical delay variable between 0 and 160 ps with a 1.0 GHz bandwidth is achieved in an InGaAsP/InP semiconductor optical amplifier (SOA) and shown to be electrically and optically controllable. An analytical model of optical delay is developed and found to agree well with the experimental data. Based on this model, we obtain design criteria to optimize the delay-bandwidth product of the optical delay in semiconductor optical amplifiers and absorbers.

© 2006 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.1150) Optical devices : All-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: March 9, 2006
Revised Manuscript: May 9, 2006
Manuscript Accepted: May 11, 2006
Published: May 29, 2006

Hui Su, Piotr Kondratko, and Shun L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  2. J. Marangos, "Slow light in cool atoms," Nature 397, 559-560 (1999). [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  4. S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. L. Wang, "Slow light using excitonic population oscillation," Phys. Rev. B 70, 235333 (2004). [CrossRef]
  5. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004). [CrossRef] [PubMed]
  6. S. Minin, M. R. Fisher, and S. L. Chuang, "Current-controlled group delay using a semiconductor Fabry-Perot amplifier," Appl. Phys. Lett. 84, 3238-3240 (2004). [CrossRef]
  7. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. Mcnab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  8. H. Su and S. L. Chuang, "Room temperature slow light in quantum-dot devices," Opt. Lett. 31, 271-273 (2006). [CrossRef] [PubMed]
  9. H. Su and S. L. Chuang, "Room temperature fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061102 (2006). [CrossRef]
  10. G. P. Agrawal, "Population Pulsations and Nondegenerate 4-Wave Mixing in Semiconductor-Lasers and Amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988). [CrossRef]
  11. T. Mukai and T. Saitoh, "Detuning Characteristics and Conversion Efficiency of Nearly Degenerate 4-Wave-Mixing in A 1.5-Mu-M Traveling-Wave Semiconductor-Laser Amplifier," IEEE J. Quantum Electron. 26, 865-875 (1990). [CrossRef]
  12. G. Eisenstein, N. Tessler, U. Koren, J. M. Wiesenfeld, G. Raybon, and C. A. Burrus, "Length Dependence of the Saturation Characteristics in 1.5-Mu-M Multiple Quantum-Well Optical Amplifiers," IEEE Photon. Technol. Lett. 2, 790-791 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited