OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4815–4825

A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure

Taiichi Otsuji, Mitsuhiro Hanabe, Takuya Nishimura, and Eiichi Sano  »View Author Affiliations

Optics Express, Vol. 14, Issue 11, pp. 4815-4825 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel terahertz plasma-wave photomixer that can improve the conversion gain and terahertz radiation power is proposed and evaluated. The photomixer is based on a high-electron mobility transistor and incorporates doubly interdigitated grating strips for the gate electrodes that periodically localize the 2D plasmons in 100-nm regions with a micron-order interval. A vertical cavity structure is formed in between the top metal grating and a terahertz mirror placed at the backside. The device features electronic tuning of plasmon characteristic frequencies, providing continuously-tunable operation below 1 THz to beyond 10 THz. Frequency-dependent finite-differential time-domain analysis demonstrates that the grating-bicoupled plasmonic structure acts as a broadband terahertz photomixer and antenna and that the vertical cavity structure effectively enhances the conversion gain and radiation power.

© 2006 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.6080) Optical devices : Sources
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

Original Manuscript: May 5, 2006
Manuscript Accepted: May 11, 2006
Published: May 29, 2006

Taiichi Otsuji, Mitsuhiro Hanabe, Takuya Nishimura, and Eiichi Sano, "A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure," Opt. Express 14, 4815-4825 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Dyakonov and M. Shur, "Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current," Phys. Rev. Lett. 71, 2465-2468 (1993). [CrossRef] [PubMed]
  2. M. Dyakonov and M. Shur, "Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid," IEEE Trans. Electron Devices 43, 380-387 (1996). [CrossRef]
  3. A. V. Chaplik, "Possible crystallization of charge carriers in low-density inversion layers," Sov. Phys. JETP 35, 395-398 (1972).
  4. M. Nakayama, "Theory of surface waves coupled to surface carriers," J. Phys. Soc. Jpn. 36, 393-398 (1974). [CrossRef]
  5. F. J. Crowne, "Contact boundary conditions and the Dyakonov-Shur instability in high electron mobility transistors," J. Appl. Phys. 82, 1242-1254 (1997). [CrossRef]
  6. S. A. Mikhailov, "Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems," Phys. Rev. B 58, 1517-1532 (1998). [CrossRef]
  7. M. V. Cheremisin, M. I. Dyakonov, M. S. Shur, and G. Samsonidze, "Influence of electron scattering on current instability in field effect transistors," Solid-State Electron. 42, 1737-1742 (1998). [CrossRef]
  8. F. J. Crowne, "Dyakonov-Shur plasma excitations in the channel of a real high-electron mobility transistor," J. Appl. Phys. 87, 8056-8063 (2000). [CrossRef]
  9. T. Otsuji, S. Nakae, and H. Kitamura, "Numerical analysis for resonance properties of plasma-wave field-effect transistors and their terahertz applications to smart photonic network systems," IEICE Trans. Electron. E84-C, 1470-1476 (2001).
  10. V. Ryzhii and M. Shur, "Analysis of tunneling-injection transit-time effects and self-excitation of terahertz plasma oscillations in high-electron-mobility transistors," Jpn. J. Appl. Phys. 41, L922-L924 (2002). [CrossRef]
  11. V. Ryzhii, I. Khmyrova, and M. Shur, "Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations," J. Appl. Phys. 91, 1875-1881(2002). [CrossRef]
  12. V. Ryzhii, I. Kymyrova, A. Sato, P. O. Vaccaro, T. Aida, and M. Shur, "Plasma mechanism of terahertz photomixing in high-electron mobilitytransistor under interband photoexcitation," J. Appl. Phys. 92, 5756-5760 (2002). [CrossRef]
  13. A. Satou, V. Ryzhii, I. Khmyrova, M. Ryzhii, and M. S. Shur, "Characteristics of a terahertz photomixer based on a high-electron mobility transistor structure with optical input through the ungated regions," J. Appl. Phys. 95, 2084-2089 (2004). [CrossRef]
  14. S. J. Allen, Jr., D. C. Tsui, and R. A. Logan, "Observation of the two-dimensional plasmon in silicon inversion layers," Phys. Rev. Lett. 38, 980-983 (1977). [CrossRef]
  15. D. C. Tsui, E. Gornik, and R. A. Logan, "Far infrared emission from plasma oscillations of Si inversion layers," Solid State Comm. 35, 875-877 (1980). [CrossRef]
  16. R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Armed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, A. C. Jones, C. R. Whitehouse, and N. Apsley, "Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas," J. Appl. Phys. 71, 6049-6061 (1992). [CrossRef]
  17. K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, "Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions," Appl. Phys. Lett. 67, 2326-2328 (1995). [CrossRef]
  18. J.-Q. Lü, M. Shur, J. L. Hesler, L. Sun, and R. Weikle, "Terahertz detector utilizing two-dimensional electronic fluid," IEEE Electron Device Lett. 19, 373-375 (1998). [CrossRef]
  19. N. Sekine, K. Yamanaka, K. Hirakawa, M. Voseburger, P. Haring-Bolivar, and H. Kurz, "Observation of terahertz radiation from higher-order two-dimensional plasmon modes in GaAs/AlGaAs single quantum wells," Appl. Phys. Lett. 74, 1006-1008 (1999). [CrossRef]
  20. M. Shur and J.-Q. Lü, "Terahertz sources and detectors using two-dimensional electronic fluid in high-electron mobility transistors," IEEE Trans. Microwave Theory and Tech. 48, 750-756 (2000). [CrossRef]
  21. T. Otsuji, Y. Kanamaru, H. Kitamura, and S. Nakae, "Terahertz plasma-wave excitation in 80-nm gate-length GaAs MESFET by photomixing long-wavelength CW laser sources," in Digest of the 59th Annual Device Research Conference, (Nortre Dame, Indiana, 2001), pp. 97-98.
  22. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, "Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors," Appl. Phys. Lett.,  81, 4637-4639 (2002). [CrossRef]
  23. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, "Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors," Appl. Phys. Lett. 81, 1627-1629 (2002). [CrossRef]
  24. T. Otsuji, Y. Kanamaru, H. Kitamura, M. Matsuoka, and O. Ogawara, "Effects of heterostructure 2D-electron confinement on the tunability of resonant frequencies of terahertz plasma-wave transistors," IEICE Trans. Electron. E86-C, 1985-1993 (2003).
  25. W. Knap. J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. Shur, "Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors," Appl. Phys. Lett. 84, 2331-2333 (2004). [CrossRef]
  26. D. Seliuta, E. Sirmulis, V. Tamosiunas, S. Balakauskas, S. Asmontas, A. Suziedelis, J. Gradauskas, G. Valusis, A. Lisauskas, H. G. Roskos, and K. Kohler, "Detection of terahertz/sub-terahertz radiation by asymmetrically-shaped 2DEG layers," Electron. Lett. 40, 631-632 (2004). [CrossRef]
  27. T. Otsuji, M. Hanabe, and O. Ogawara, "Terahertz plasma wave resonance of two-dimensional electrons in InGaP/InGaAs/GaAs high-electron-mobility transistors," Appl. Phys. Lett. 85, 2119-2121 (2004). [CrossRef]
  28. F. Teppe, D. Veksler, V. Yu. Kachorovski, A. P. Dmitriev, X. Xie, X.-C. Xhang, S. Rumyantsev, W. Knap, and M. Shur, "Plasma wave resonant detection of femtosecond pulsed terahertz radiation by a nanometer field-effect transistor," Appl. Phys. Lett. 87, 022102 (2005). [CrossRef]
  29. M. Hanabe, T. Otsuji, T. Ishibashi, T. Uno, and V. Ryzhii, "Modulation effects of photocarriers on the terahertz plasma-wave resonance in high-electron-mobility transistors under interband photoexcitation," Jpn. J. Appl. Phys. 44, 3842-3847 (2005). [CrossRef]
  30. M. Lee, M. C. Wanke, and J. L. Reno, "Millimeter wave mixing using plasmon and bolometric response in a double-quantum-well field-effect transistor," Appl. Phys. Lett. 86, 033501 (2005). [CrossRef]
  31. S. J. Smith and E. M. Purcell, "Visible light from localized surface charges moving across a grating," Phys. Rev. 92, 1069 (1953). [CrossRef]
  32. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
  33. R. J. Luebbers, F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag. 39, 29-34 (1991). [CrossRef]
  34. P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Keiding, E. H. Linfield, and D. A. Ritchie, "Drude conductivity of highly doped GaAs at terahertz frequencies," J. Appl. Phys. 87, 2382-2385 (2000). [CrossRef]
  35. J. A. Porto, F. J. Garchia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  36. Y. Takanashi, K. Takahata, and Y. Muramoto, "Characteristics of InAlAs/InGaAs high-electron-mobility transistors under illumination with modulated light," IEEE Trans. Electron Devices 46, 2271-2277 (1999). [CrossRef]
  37. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, "High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes," IEEE J. Sel. Top. Quantum Electron. 10, 709-727 (2004). [CrossRef]
  38. S. Verghese, K. A. McIntosh, and E. R. Brown, "Highly tunable fiber-coupled photomixers with coherent terahertz output power," IEEE Trans. Microwave Theory Tech. 45, 1301-1309 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (732 KB)     
» Media 2: MOV (748 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited