OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4850–4860

Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure

Xiaojin Jiao, Pei Wang, Douguo Zhang, Ling Tang, Jianping Xie, and Hai Ming  »View Author Affiliations

Optics Express, Vol. 14, Issue 11, pp. 4850-4860 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (373 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metallic waveguide theory has been used to design subwavelength metallic grating waveguide structure which can excite the waveguide modes, especially the low frequency coupled surface plasmons mode, to achieve sub-50nm resolution lithography pattern by using the light with 436nm wavelength. The Finite Difference Time Domain method has been performed to analyze the performance of lithography pattern generated by two possible schemes. One named metal-layer scheme utilizes three different modes (two coupled surface plasmons and one non-coupled surface plasmons) on the metal layer to generate the lithography patterns with different resolution and visibility. The other named metal-cladding scheme excites the coupled mode in the metal-cladding region, which utilizes multi-layer coupled effect to generate the field with higher resolution (~34nm) and approximately same visibility compared with the metal-layer scheme. The effectively deviated range of grating period is also analyzed to keep the output pattern effective for the lithography.

© 2006 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: March 28, 2006
Revised Manuscript: May 8, 2006
Manuscript Accepted: May 10, 2006
Published: May 29, 2006

Xiaojin Jiao, Pei Wang, Douguo Zhang, Ling Tang, Jianping Xie, and Hai Ming, "Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure," Opt. Express 14, 4850-4860 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994). [CrossRef]
  2. S. Okazaki, "Resolution limits of optical lithography," J. Vac. Sci. Technol. B 9, 2829-2833 (1991). [CrossRef]
  3. H. Schmid, H. Biebuyck, B. Michel, and O. J. F. Martin, "Light-coupling masks for lensless, sub-wavelength optical lithography," Appl. Phys. Lett. 72, 2379-2381 (1998). [CrossRef]
  4. J. G. Goodberlet, "Patterning 100 nm features using deep-ultraviolet contact photolithography," Appl. Phys. Lett. 76, 667-669 (2000). [CrossRef]
  5. J. G. Goodberlet and H. Kavak, "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002). [CrossRef]
  6. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999). [CrossRef]
  7. P. G. Kik, A. L. Martin, S. A. Maier, and H. A. Atwater, "Metal nanoparticle arrays for near field optical lithography," Proc. SPIE 4810, 7-14 (2002). [CrossRef]
  8. O. J. Martin, N. B. Piller, H. Schmid, H. Biebuyck, and B. Michel, "Energy flow in light-coupling masks for lensless optical lithography," Opt. Express 3, 280-285 (1998). [CrossRef] [PubMed]
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin 1988).
  10. X. G. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3066 (2004). [CrossRef] [PubMed]
  11. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004). [CrossRef]
  12. W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004). [CrossRef]
  13. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  14. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  15. N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003). [CrossRef] [PubMed]
  16. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004). [CrossRef]
  17. D. O. S. Melville, and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127- 2134 (2005). [CrossRef] [PubMed]
  18. R. J. Blaikie, M. M. Alkaisi, S. J. Mcnab and D. O. S. Melville, "Nanoscale optical patterning using evanescent fields and surface plasmons,"Int. J. Nanosci. 3, 405-417 (2004). [CrossRef]
  19. D. B. Shao, and S. C. Chen, "Surface-plasmon-assisted Nanoscale Photolithography by polarized light," Appl. Phys. Lett. 86, 253107-253110 (2005). [CrossRef]
  20. D. Sarid, "Long-range surface-plasma waves on very thin metal-films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  21. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  22. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, "Long-range surface plasmon resonances in gratingwaveguide structures," Appl. Phys. Lett. 70, 1210-1212 (1997). [CrossRef]
  23. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, MA, 2000).
  24. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comput. Phys.,  114, 185-200 (1994). [CrossRef]
  25. P. B. Johnson, and R. W. Christy, "Optical constant of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  26. J. Chilwell, and I. Hodgkinson, "Thin-films field-transfer matrix-theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited