OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4898–4907

Terahertz response of GaN thin films

Tsong-Ru Tsai, Shi-Jie Chen, Chih-Fu Chang, Sheng-Hsien Hsu, Tai-Yuan Lin, and Cheng-Chung Chi  »View Author Affiliations


Optics Express, Vol. 14, Issue 11, pp. 4898-4907 (2006)
http://dx.doi.org/10.1364/OE.14.004898


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The indices of refraction, extinction constants and complex conductivities of the GaN film for frequencies ranging from 0.2 to 2.5 THz are obtained using THz time-domain spectroscopy. The results correspond well with the Kohlrausch stretched exponential model. Using the Kohlrausch model fit not only provides the mobility of the free carriers in the GaN film, but also estimates the relaxation time distribution function and average relaxation time.

© 2006 Optical Society of America

OCIS Codes
(300.6270) Spectroscopy : Spectroscopy, far infrared
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

History
Original Manuscript: March 9, 2006
Revised Manuscript: May 5, 2006
Manuscript Accepted: May 22, 2006
Published: May 29, 2006

Citation
Tsong-Ru Tsai, Shi-Jie Chen, Chih-Fu Chang, Sheng-Hsien Hsu, Tai-Yuan Lin, and Cheng-Chung Chi, "Terahertz response of GaN thin films," Opt. Express 14, 4898-4907 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, T. Mukai, and M. Senoh, "Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond," Appl. Phys. Lett. 64, 1687-1689 (1994). [CrossRef]
  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, "Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours," Appl. Phys. Lett. 70, 1417-1419 (1997). [CrossRef]
  3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys.,  35, L74-L76 (1996). [CrossRef]
  4. F. A. Ponce, and D. P. Bour, "NItride-based semiconductors for blue and green light-emitting devices," Nature 386, 351-359, (1997). [CrossRef]
  5. X. A. Cao, J. M. Teetsov, M. P. D'Evelyn, D. W. Merfeld, and C. H. Yan, "Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates," Appl. Phys. Lett. 85, 7-9 (2004). [CrossRef]
  6. D. I. Florescu, J. C. Ramer, D. S. Lee, and E. A. Armour, "InGaN/GaN single-quantum-well light-emitting diodes optical output efficiency dependence on the properties of the barrier layer separating the active and p-layer regions," Appl. Phys. Lett. 84, 5252-5254 (2004). [CrossRef]
  7. K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, "Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition," Appl. Phys. Lett. 84, 3307-3309 (2004). [CrossRef]
  8. D. C. Reynolds, D. C. Look, B. Jogai, A. W. Saxler, S. S. Park, and J. Y. Hahn, "A giant magnetoresistance sensor for high magnetic field measurements," Appl. Phys. Lett. 77, 1879-1881 (2000). [CrossRef]
  9. D. C. Reynolds, B. Jogai, and T. C. Collins, "Longitudinal Excitons in GaN," Appl. Phys. Lett. 80, 3928-3930 (2002). [CrossRef]
  10. A. Kasic, M. Schubert, S. Einfeldt, D. Hommel, and T. E. Tiwald, "Free-carrier and phonon properties of n- and p-type hexagonal GaN films measured by infrared ellipsometry," Phys. Rev. B 62, 7365-7377 (2000). [CrossRef]
  11. A. Yasan, R. McClintock, K. Mayes, S. R. Darvish, H. Zhang, P. Kung, M. Razeghi, S. K. Lee, and J. Y. Han, "Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire," Appl. Phys. Lett. 81, 2151-2153 (2002). [CrossRef]
  12. W. J. Moore, J. A. Freitas, Jr., S. K. Lee, S. S. Park, and J. Y. Han, "Magneto-optical studies of free-standing hydride-vapor-phase epitaxial GaN," Phys. Rev. B 65, 081201 (2002). [CrossRef]
  13. D. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, S. H. Wei, M. A. Khan, and C. J. Sun, "Fundamental optical transitions in GaN," Appl. Phys. Lett. 68, 2784-2786 (1996). [CrossRef]
  14. K. T. Tsen, R. P. Joshi, D. K. Ferry, A. Botchkarev, B. Sverdlov, A. Salvador, and H. Morkoc, "Nonequilibrium electron distributions and phonon dynamics in wurtzite GaN," Appl. Phys. Lett. 68, 2990-2992 (1996). [CrossRef]
  15. T. P. Chow, and R. Tyagi, "Wide bandgap compound semiconductors for superior high-voltage unipolar power devices," IEEE Trans. Electron. Dev. 41, 1481-1483 (1994). [CrossRef]
  16. R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, "Electron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates," Appl. Phys. Lett. 72, 707-709 (1998). [CrossRef]
  17. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, "GaN: Processing, defects, and devices," J. Appl. Phys. 86, 1-78 (1999). [CrossRef]
  18. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies," J. Appl. Phys. 76, 1363-1398 (1994). [CrossRef]
  19. W. Zhang, A. K. Azad, and D. Grischkowsky, "Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN," Appl. Phys. Lett. 82, 2841-2843 (2003). [CrossRef]
  20. T. Nagashima, K. Takata, S. Nashima, H. Harima, and M. Hangyo, "measurement of electrical properties of GaN thin films using terahertz-time domain spectroscopy," Jpn. J. Appl. Phys.,  44, 926-931 (2005). [CrossRef]
  21. T. I. Jeon, and D. Grischkowsky, "Nature of conduction in doped silicon," Phys. Rev. Lett. 78, 1106-1109 (1997). [CrossRef]
  22. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy," Phys. Rev. B 62, 15764-15777 (2000). [CrossRef]
  23. N. V. Smith, "Classical generalization of the Drude formula for the optical conductivity," Phys. Rev. B 64, 155106 (2001). [CrossRef]
  24. D. W. Davidson and R. H. Cole, "Dielectric Relaxation in Glycerol, Propylene Glycol, and n-Propanol," J. Chem. Phys. 19, 1484-1490 (1951). [CrossRef]
  25. P. Gilard and J. deBast, in Advances in Glass Technology (Plenum, New York, 1962), p. 442.
  26. G. Williams and D. C. Watts, "Non-Symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function," Trans. Faraday Soc. 66, 80-85 (1970). [CrossRef]
  27. A. S. Barker, Jr. and M. Ilegems, "Infrared Lattice Vibrations and Free-Electron Dispersion in GaN," Phys. Rev. B 7, 743-750 (1973). [CrossRef]
  28. C. P. Lindsey and G. D. Patterson, "Detailed comparison of the Williams-Watts and Cole-Davidson functions," J. Chem. Phys. 73, 3348-3357 (1980). [CrossRef]
  29. F. Alvarez, A. Alegria, and J. Colmenero, "Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions," Phys. Rev. B 44, 7306-7312 (1991). [CrossRef]
  30. M. Tyagi, A. Alegria, and J. Colmenero, "Heterogeneous dynamics of poly(vinyl acetate) far above Tg:A combined study by dielectric spectroscopy and quasielastic neutron scattering," J. Chem. Phys. 122, 2449091-24490913 (2005). [CrossRef]
  31. D. Grischkowsky, S. R. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited