OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4908–4914

Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases

M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung  »View Author Affiliations

Optics Express, Vol. 14, Issue 11, pp. 4908-4914 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present preparation of Ge nanostructures formed using by femtosecond laser pulse and origin of visible photoluminescence (PL) properties. High intensity of incident laser energy gives rise to make oxidized layer to surface of Ge nanoparticle after irradiation. Moreover, size dependent Raman shift and PL spectrums are observed with different fluences and various process surroundings. It is noted that the oxidation of Ge nanoparticle formed ambient surroundings plays an important role of photoluminescence.

© 2006 Optical Society of America

OCIS Codes
(300.6550) Spectroscopy : Spectroscopy, visible
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

Original Manuscript: January 20, 2006
Revised Manuscript: May 8, 2006
Manuscript Accepted: May 13, 2006
Published: May 29, 2006

M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and Sae Chae Jeoung, "Formation of Photoluminescent Germanium Nanostructures by Femtosecond Laser Processing on Bulk Germanium: Role of Ambient Gases," Opt. Express 14, 4908-4914 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Okamoto and Y. Kanemitsu, "Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of exitons," Phys. Rev. B 54, 16421 (1996). [CrossRef]
  2. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, "Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices," Phys. Rev. B 58, 7921 (1998). [CrossRef]
  3. W. K. Choi, Y. W. Ho, S. P. Ng, and V. Ng, "Microstructural and photoluminescence studies of germanium nanocrystals in amorphous silicon oxide films," J. Appl. Phys. 89, 2168 (2001). [CrossRef]
  4. H.-Ch. Weissker, J. Furthumller, and F. Bechstedt, "Optical properties of Ge and Si nanocrystallites from ab initio calculations. II. Hydrogenated nanocrystallites," Phys. Rev. B 65, 155328 (2002). [CrossRef]
  5. H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, "Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol-gel method," Appl. Phys. Lett. 81, 5144 (2002). [CrossRef]
  6. G. Kartopu, S. C. Bayliss, R. E. Hummel, and Y. Ekinci, "Simultaneous micro-Raman and photoluminescence study of spark-processed germanium: Report on the origin of the orange photoluminescence emission band," J. Appl. Phys. 95, 3466 (2004). [CrossRef]
  7. H. Morisaki, F. W. Ping, H. Ono, and K. Yazawa, "Above-band-gap photoluminescence from Si fine particles with oxide shell," J. Appl. Phys. 70, 1869 (1991). [CrossRef]
  8. S. Sato, S. Nozaki, H. Morisaki, and M. Iwase, "Tetragonal germanium films deposited by the cluster-beam evaporation technique," Appl. Phys. Lett. 66, 3176 (1995). [CrossRef]
  9. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85, 5694 (2004). [CrossRef]
  10. S. Kawat, H.-B. Sun, T. Tanaka and K. Takada, "Finer features for functional microdevices," Nature 412, 697 (2001). [CrossRef]
  11. S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278 (2005). [CrossRef]
  12. M.-Il Park, C.-O. Park, C. S. Kim, S. C. Jeoung, "Characterization of femtosecond-laser-ablated a Germanium single crystal in air by using X-ray diffraction," J. Korean Phys. Soc. 46, 531 (2005).Q1
  13. M. A. Seo, D. S. Kim, H. S. Kim, and S. C. Jeoung, "Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser," Opt. Express 14, 3694 (2006). [CrossRef] [PubMed]
  14. J. R. Choi, M. Yoon, Y-H. Yim, and S. C. Jeoung, "Resonance Raman studies on ZnII tetraphenylporphyrin encapsulated into MCM-41 and CuIIALMCM-41:catalytic ionization of ZnIITPP and its central metal ion exchange," Chem. Phys. Lett.,  351391 (2002). [CrossRef]
  15. K. Kim, J. Y. Lee, S. C. Jeoung, "Lifetime enhancement of the exciton in trapezoidal-type InGaN/GaN multi-quantum well structures," Thin Solid Films 478286 (2005). [CrossRef]
  16. A. Cavalleri, C. W. Siders, C. Rose-Petruck, R. Jimenez, Cs. Toth, J. A. Squier, C. P. J. Barty, K. R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde, "Ultrafast x-ray measurement of laser heating in semiconductors: Parameters determining the melting threshold," Phys. Rev. B 63, 193306 (2000). [CrossRef]
  17. P. Tognini, A. Stella, S. De Silvestri, M. Nisoli, S. Stagira, P. Cheyssac, and R. Kofman, "Ultrafast carrier dynamics in germanium nanoparticles," Appl. Phys. Lett. 75, 208 (1999). [CrossRef]
  18. T. Takagahara and K. Takeda, "Theory of the quantum confinement effect on excitons in quantum dots of indirect materials," Phys. Rev. B 46, 15578 (1992). [CrossRef]
  19. I. H. Campbell and P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors," Solid State Commun. 58, 739 (1986). [CrossRef]
  20. H. Richter, Z. P. Wang, and L. Ley, "The one phonon Raman spectrum in microcrystalline silicon," Solid State Commun. 39, 625 (1981). [CrossRef]
  21. X. L. Wu, T. Gao, X. M. Bao, F. Yan, S. S. Jiang, and D. Feng, "Annealing temperature dependence of Raman scattering in Ge+-implanted SiO2 films," J. Appl. Phys. 82, 2704 (1997). [CrossRef]
  22. W. K. Choi, V. Ng, S. P. Ng, and H. H. Thio, Z. X. Shen, and W. S. Li, "Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing," J. Appl. Phys. 86, 1398 (1999). [CrossRef]
  23. K. L. Teo, S. H. Kwok, P. Y. Yu, and S. Guha "Quantum confinement of quasi-two-dimensional E1 excitons in Ge nanocrystals studied by resonant Raman scattering," Phys. Rev. B 62, 1584 (2000). [CrossRef]
  24. U. Serincan, G. Kartopu, A. Guennes, T. G. Finstad, R. Turan, Y. Ekinci, and S. C. Bayliss, "Characterization of Ge nanocrystals embedded in SiO2 by Raman spectroscopy," Semicond. Sci. Technol. 19, 247 (2004).Q2 [CrossRef]
  25. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited