OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4928–4934

Spectrally smooth supercontinuum from 350 nm to 3 µm in sub-centimeter lengths of soft-glass photonic crystal fibers.

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell  »View Author Affiliations

Optics Express, Vol. 14, Issue 11, pp. 4928-4934 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The conversion of light fields in photonic crystal fibers (PCFs) capitalizes on the dramatic enhancement of several optical nonlinearities. We present here spectrally smooth, highly broadband supercontinuum radiation in a short piece of high-nonlinearity soft-glass PCF. This supercontinuum spans several optical octaves, with a spectral range extending from 350 nm to beyond 3000 nm. The selection of an appropriate propagation-length determines the spectral quality of the supercontinuum generated. Experimentally, we clearly identify two regimes of nonlinear pulse transformation: when the fiber length is much shorter than the dispersion length, soliton propagation is not important and a symmetric supercontinuum spectrum arises from almost pure self-phase modulation. For longer fiber lengths the supercontinuum is formed by the breakup of multiple Raman-shifting solitons. In both regions very broad supercontinuum radiation is produced.

© 2006 Optical Society of America

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(320.5550) Ultrafast optics : Pulses
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Ultrafast Optics

Original Manuscript: April 3, 2006
Revised Manuscript: May 10, 2006
Manuscript Accepted: May 10, 2006
Published: May 29, 2006

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424,511-515 (2003). [CrossRef] [PubMed]
  2. R. Alfano, The Supercontinuum Laser Source (Springer, NY, 1989).
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, CA, 2001).
  4. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. Russell, F. G. Omenetto, and A. J. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10(25), 1520-1525 (2002).
  5. V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, "Low-threshold supercontinuum generation from an extruded SF6PCF using a compact Cr4+: YAG laser," Appl. Phys.B-Lasers and Optics 79, 591-596 (2004). [CrossRef]
  6. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. Kumar, A. K. George, J. C. Knight, and P. S. Russell, "Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm," Opt. Express 11, 3196-3201 (2003). [CrossRef] [PubMed]
  7. N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers," IEEE J. Sel. Top. Quantum Electron. 7, 518-524 (2001). [CrossRef]
  8. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, "Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber," Opt. Express 12, 317-324 (2004). [CrossRef] [PubMed]
  9. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc.Am. B 21, 1969-1980 (2004). [CrossRef]
  10. A. V. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002). [CrossRef]
  11. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev.Lett. 88 (2002). [CrossRef] [PubMed]
  12. G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, "Mirror dispersion control of a hollow fiber supercontinuum," Appl.Phys. B 78, 551-555 (2004). [CrossRef]
  13. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005). [CrossRef]
  14. A. Proulx, J. M. Menard, N. Ho, J. M. Laniel, R. Vallee, and C. Pare, "Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers," Opt. Express 11, 3338-3345 (2003). [CrossRef] [PubMed]
  15. L. Tartara, I. Cristiani, V. Degiorgio, F. Carbone, D. Faccio, M. Romagnoli, and W. Belardi, "Phase-matched nonlinear interactions in a holey fiber induced by infrared super-continuum generation," Opt. Commun. 215, 191-197 (2003). [CrossRef]
  16. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am.B 19, 753-764 (2002). [CrossRef]
  17. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, "Interaction of an optical soliton with a dispersive wave," Phys. Rev. Lett. 95, (2005). [CrossRef] [PubMed]
  18. F. Biancalana, D. V. Skryabin, and A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70 (2004). [CrossRef]
  19. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  20. N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. S. Russell, "Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber," Optics Commun. 248, 281-285 (2005). [CrossRef]
  21. F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Polarization dependent harmonic generation in microstructured fibers," Opt. Express 11, 61-67 (2003). [CrossRef] [PubMed]
  22. For the specific set of measurements presented here we are not able to include data in the 1750-2000 nm region. The presence of supercontinuum in this spectral region has been previously verified in this PCF by the authors [3].
  23. The total average power through the fiber is determined using a thermal head power meter, with NIST traceable calibration and sensitivity in the 250nm-10 μm range (+/- 5% accuracy).
  24. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. S. Windeler, "Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002). [PubMed]
  25. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 8720, (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited