OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5021–5030

Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes

A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova  »View Author Affiliations


Optics Express, Vol. 14, Issue 12, pp. 5021-5030 (2006)
http://dx.doi.org/10.1364/OE.14.005021


View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new integrated active quenching circuit (i-AQC) designed in a standard CMOS process is presented, capable of operating with any available single photon avalanche diode (SPAD) over wide temperature range. The circuit is suitable for attaining high photon timing resolution also with wide-area SPADs. The new i-AQC integrates the basic active-quenching loop, a patented low-side timing circuit comprising a fast pulse pick-up scheme that substantially improves time-jitter performance, and a novel active-load passive quenching mechanism (consisting of a current mirror rather than a traditional high-value resistor) greatly improves the maximum counting rate. The circuit is also suitable for portable instruments, miniaturized detector modules and SPAD-array detectors. The overall features of the circuit may open the way to new developments in diversified applications of time-correlated photon counting in life sciences and material sciences.

© 2006 Optical Society of America

OCIS Codes
(000.0000) General : General

ToC Category:
Detectors

History
Original Manuscript: February 17, 2006
Revised Manuscript: April 26, 2006
Manuscript Accepted: April 28, 2006
Published: June 12, 2006

Citation
A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, "Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes," Opt. Express 14, 5021-5030 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, Berlin, 2005). [CrossRef]
  2. L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993). [CrossRef]
  3. S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676-1683 (1999). [CrossRef] [PubMed]
  4. H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003). [CrossRef] [PubMed]
  5. S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000). [CrossRef] [PubMed]
  6. D. C. Williams and S. A. Soper, "Ultrasensitive near IR fluorescence detection for capillary gel electrophoresis and DNA sequencing applications," Anal. Chem. 67, 3427-3432 (1995). [CrossRef] [PubMed]
  7. S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).
  8. W. Becker, A. Bergmann, K. Konig. U. Tirlapur, "Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc SPIE 4262, 414-419 (2001). [CrossRef]
  9. C. G. Bethea, B. F. Levine, S. Cova, and G. Ripamonti, "High-resolution and high-sensitivity optical-time-domain reflectometer," Opt. Lett. 13, 233-235 (1988) [CrossRef] [PubMed]
  10. G. Ripamonti, M. Ghioni, and A. Lacaita, "No dead-space optical time-domain reflectometer," IEEE J. Lightwave Technol. 8, 1278-1283 (1990). [CrossRef]
  11. A. Lacaita, P. A. Francese, S. Cova, and G. Ripamonti, "Single-photon optical-time-domain reflectometer at 1.3um with 5cm resolution and high sensivity," Opt. Lett. 18, 1110-1112 (1993) [CrossRef] [PubMed]
  12. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, A. Wallace, "Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting," Appl. Opt. 41, 1063-1070 (2002). [CrossRef] [PubMed]
  13. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000). [CrossRef]
  14. P. D. Townsend, "Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems," IEEE Photonics Technol. Lett. 10, 1048-1050 (1998). [CrossRef]
  15. Gordon, K. J. , Fernandez, V. , Townsend, P. D. , Buller, G. S. , "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004). [CrossRef]
  16. J. A. Kash, J. C. Tsang, Phys. Stat. Sol.(b),  204, 507 (1997). [CrossRef]
  17. F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001). [CrossRef]
  18. Harp 100 from PicoQuant, http://www.photonics.com/spectra/newprods/XQ/ASP/newprodidta.1003/QX/read.htm
  19. TCPC card from Becker-Hickl, http://www.becker-hickl.de/tcspc.htm
  20. J. Mod. Opt 51, 1265-1557 (2004)
  21. P. Antognetti, S. Cova and A. Longoni, "A study of the operation and performances of an avalanche diode as a single photon detector," in Proc. 2nd Ispra Nuclear Electronics Symposium Stresa May 20-23, Euratom Publication EUR 5370e 453-456 (1975).
  22. S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981) [CrossRef]
  23. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche photodiodes and quenching circuits for single photon -detection," Appl. Opt. 35, 1956-1976 (1996). [CrossRef] [PubMed]
  24. F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003). [CrossRef]
  25. F. Zappa, S. Tisa, A. Gulinatti, A. Gallivanoni, and S. Cova, "Complete single--photon counting and timing module in a microchip," Opt. Lett. 30, 1327 (2005). [CrossRef] [PubMed]
  26. S. Cova, M. Ghioni, and F. Zappa "Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes," US patent No. 6,384,663 B2, May 7, 2002
  27. I. Rech, I. Labanca, M. Ghioni and S. Cova, Rev. Sci. Instr. (to be published).
  28. A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single--photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989). [CrossRef]
  29. A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003). [CrossRef]
  30. A. Lacaita, M. Mastrapasqua, "Strong dependence of time resolution on detector diameter in single photon avalanche diodes," Electron. Lett. 26, 2053-2054 (1990). [CrossRef]
  31. H. Dautet, P. Deschampes, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. Webb, "Photon counting techniques with silicon avalanche photodiodes," Appl. Opt. 32, 3894-3900 (1993). [PubMed]
  32. SPCM-AQR Single Photon Counting Module Data Sheet, Perkin Elmer Optoelectronics Canada Ltd., Vaudreuil, Quebec, Canada; http://optoelectronics.perkinelmer.com
  33. L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993). [CrossRef]
  34. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).
  35. A. Spinelli and L. M. Davis, H. Dautet, "Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting," Rev. Sci. Instrum. 67, 55-61 (1996). [CrossRef]
  36. A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, "Photon-assisted avalanche spreading in reach-through photodiodes," Appl. Phys. Lett. 62, 606-608 (1993). [CrossRef]
  37. A. Spinelli, A. L. Lacaita, "Physics and numerical simulation of single photon avalanche diodes," IEEE Trans. Electron Devices 44, 1931-1943 (1997) and A. Lacaita, (personal communication 1995) [CrossRef]
  38. A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005). [CrossRef]
  39. D. Y. Kim, O. S. Kwon, and J. H. Bang, "The design of the high speed amplifier circuit for using in the analog subsytems," in Proc. 35th MWSCAS1, Washington DC, USA, 485-488 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited