OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5135–5142

Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer

Haoyun Wei, Liangcai Cao, Zhenfeng Xu, Qingsheng He, Guofan Jin, and Claire Gu  »View Author Affiliations

Optics Express, Vol. 14, Issue 12, pp. 5135-5142 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dual-channel holographic recording technique and its corresponding memory scheme in the cationic ring-opening photopolymer are presented. In the dual-channel technique, a pair of holograms are recorded simultaneously with two orthogonal polarization channels in the common volume of the material, and are reconstructed concurrently with negligible inter-channel crosstalk. The grating strengths of these two channels are investigated and the relevant parameters for equal diffraction intensity readout are optimized. Combining the dual-channel technique with speckle shift multiplexing, a high-density holographic memory is realized. This dual-channel scheme enables the users to interact with the storage medium from an additional channel. The simultaneous nature of the two channels also offers a faster data transfer rate in both the recording and reading processes.

© 2006 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:

Original Manuscript: March 16, 2006
Revised Manuscript: May 28, 2006
Manuscript Accepted: May 31, 2006
Published: June 12, 2006

Haoyun Wei, Liangcai Cao, Zhenfeng Xu, Qingsheng He, Guofan Jin, and Claire Gu, "Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer," Opt. Express 14, 5135-5142 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
  2. L. d’Auria, J. P. Huignard, and E. Epitz, "holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Mag. 9, 83-94 (1973). [CrossRef]
  3. F.H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Opt. Lett. 18, 915-917 (1993). [CrossRef] [PubMed]
  4. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, "Holographic storage using shift multiplexing," Opt. Lett. 20, 782-784 (1995). [CrossRef] [PubMed]
  5. A.M. Darskii and V.B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. 65, 392-395 (1988).
  6. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, "Holographic storage of multiplex high-capacity digital data pages in thick photopolymer systems," Opt. Lett. 23, 1710-1712 (1998). [CrossRef]
  7. G.A. Rakuljic, V. Levya, and A. Yariv, "Optical data storage by using orthogonal wavelength-multiplexed tunable diode-laser," Opt. Lett. 17, 1471-1473 (1992). [CrossRef] [PubMed]
  8. S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993). [CrossRef]
  9. W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, "polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003). [CrossRef]
  10. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, "Polarization holography. 3: Some applications of polarization holographic recording," Appl. Opt. 24, 785-788 (1985). [CrossRef] [PubMed]
  11. W.D. Koek, N. Bhattacharya, and J.J.M. Braat, "Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin," Opt. Lett. 29, 101-103 (2004). [CrossRef] [PubMed]
  12. YP. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals," Appl. Phys. Lett. 78, 4076-4078 (2001). [CrossRef]
  13. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," in Diffractive and Holographic Optical Technology III, I. Cindrich, and S. H. Lee, Eds., Proc. SPIE 2689, 127-141 (1996).
  14. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004). [CrossRef] [PubMed]
  15. L. Paraschis and L. Hesselink, "Properties of compositional volume grating recording in photopolymers," in International Symposium on Nonlinear Optics. IEEE, 72-74 (1998).
  16. L. Paraschis, Y. Sugiyama, and L. Hesselink, "Physical properties of volume holographic recording utilizing photo-initiated polymerization for nonvolatile digital data storage," in Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Coufal, and G. T. Sincerbox, Eds., Proc. SPIE 3802, 72-83 (1999). [CrossRef]
  17. G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994). [CrossRef]
  18. S. Piazzolla and B. K. Jenkins, "Holographic grating formation in photopolymer," Opt. Lett. 21, 1075-1077 (1996). [CrossRef] [PubMed]
  19. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).
  20. For the detail information of Aprilis media properties, http://www.aprilisinc.com/Aprilils media product sheet.pdf.
  21. D. Papazoglou, M. Loulakis, G. Siganakis, and N. Vainos, "Holographic read - write projector of video images," Opt. Express 10, 280-285 (2002) [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited