OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5154–5167

Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs

Yan Zhao, Pavel A. Belov, and Yang Hao  »View Author Affiliations

Optics Express, Vol. 14, Issue 12, pp. 5154-5167 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1875 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.

© 2006 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.2990) Imaging systems : Image formation theory
(260.2030) Physical optics : Dispersion

ToC Category:
Image Processing

Original Manuscript: May 5, 2006
Revised Manuscript: May 25, 2006
Manuscript Accepted: May 25, 2006
Published: June 12, 2006

Yan Zhao, Pavel A. Belov, and Yang Hao, "Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs," Opt. Express 14, 5154-5167 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Pendry, "Negative refraction index makes perfect lens," Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  2. V. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  3. P. A. Belov, C. R. Simovski, and P. Ikonen, "Canalization of sub-wavelength images by electromagnetic crystals," Phys. Rev. B. 71, 193105 (2005). [CrossRef]
  4. P. Ikonen, P. A. Belov, C. R. Simovski, and S. I. Maslovski, "Experimental demonstration of subwavelength field channeling at microwave frequencies using a capacitively loaded wire medium," Phys. Rev. B 73, 073102 (2006). [CrossRef]
  5. P. A. Belov, Y. Hao, and S. Sudhakaran, "Subwavelength microwave imaging using an array of parallel conducting wires as a lens," Phys. Rev. B 73, 033108 (2006). [CrossRef]
  6. P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006). [CrossRef]
  7. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Phys. Rev. B 67, 113103 (2003). [CrossRef]
  8. M. G. Silveirinha, "Nonlocal homogenization model for a periodic array of epsilon-negative rods," accepted to Phys. Rev. E (arXiv: cond-mat/0602471) (2006).
  9. W. Rotman, "Plasma simulations by artificial dielectrics and parallel-plate media," IRE Trans. Ant. Propag. 10, 82-95 (1962). [CrossRef]
  10. J. Brown, "Artificial Dielectrics," Progress in dielectrics 2, 195-225 (1960).
  11. J. Pendry, A. Holden, W. Steward, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  12. P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, "Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires," J. Electromagn. Waves Applic. 16, 1153-1170 (2002). [CrossRef]
  13. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propgat. 14, 302-307 (1966). [CrossRef]
  14. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Norwood, MA: Artech House, 1995).
  15. F. B. Hildebrand, Introduction to Numerical Analysis (New York: Mc-Graw-Hill, 1956).
  16. Y. Zhao, P. A. Belov, and Y. Hao, "Modelling of wave propagation in wire media using spatially dispersive finite-difference time-domain method: numerical aspects," submitted to IEEE Trans. Antennas Propagat. (arXiv: cond-mat/0604012) (2006).
  17. K. P. Prokopidis, E. P. Kosmidou, and T. D. Tsiboukis, "An FDTD algorithm for wave propagation in dispersive media using higher-order schemes," J. Electromagn. Waves Appl. 18, 1171-1194 (2004). [CrossRef]
  18. C. R. Simovski and P. A. Belov, "Low-frequency spatial dispersion in wire media," Phys. Rev. E 70, 046616 (2004). [CrossRef]
  19. M. Silveirinha and C. Fernandes, "Homogenization of 3D connected and non-connected wire metamaterials," IEEE Trans. Microwave Theory Tech. 54, 1418-1430 (2005). [CrossRef]
  20. M. Silveirinha and C. Fernandes, "Homogenization of metamaterial surfaces and slabs: the crossed wire mesh canonical problem," IEEE Trans. Antennas Propgat. 53, 59-69 (2005). [CrossRef]
  21. J. R. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys. 114, 185-200 (1994). [CrossRef]
  22. P. A. Belov and M. G. Silveirinha, "Resolution of sub-wavelength lenses formed by the wire medium," accepted to Phys. Rev. E (arXiv: physics/0511139) (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3635 KB)     
» Media 2: MOV (3282 KB)     
» Media 3: MOV (4606 KB)     
» Media 4: MOV (3233 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited