OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5216–5222

Heating effects in tip-enhanced optical microscopy

Andrew Downes, Donald Salter, and Alistair Elfick  »View Author Affiliations

Optics Express, Vol. 14, Issue 12, pp. 5216-5222 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Finite element simulations of laser-induced heating in scanning probe microscopy are presented. The electromagnetic field is first simulated for a variety of tip and substrate materials, and for air and aqueous environments. This electromagnetic field, in the end of the tip and substrate under the tip, produces Joule heating. Using this Joule heat source, steady state thermal simulations are performed. As a result of the large enhancement of optical power by the tip-substrate cavity, predicted temperature rises can be over 3 orders of magnitude higher than the values predicted without a tip present, but the optical signal can be enhanced by over 10 orders. Gold tips and substrates are predicted to give the highest optical signal for a given temperature increase.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 30, 2006
Revised Manuscript: May 12, 2006
Manuscript Accepted: May 12, 2006
Published: June 12, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Andrew Downes, Donald Salter, and Alistair Elfick, "Heating effects in tip-enhanced optical microscopy," Opt. Express 14, 5216-5222 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995). [CrossRef] [PubMed]
  2. R. Hillenbrand, and F. Keilmann, "Complex Optical Constants on a Subwavelength Scale," Phys. Rev. Lett. 85, 3029-3032 (2000). [CrossRef] [PubMed]
  3. B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005). [CrossRef]
  4. R. Stockle, Y. Suh, V. Deckert and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000). [CrossRef]
  5. N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003). [CrossRef]
  6. A. Downes, D. Salter, and A. Elfick, "Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy," J. Phys Chem. B 110, 6692-6708 (2006). [CrossRef] [PubMed]
  7. S.L. McCall and P.M. Platzman, "Raman scattering from chemisorbed molecules at surfaces," Phys. Rev. B 22, 1660-1662 (1980). [CrossRef]
  8. A. Hartschuh, N. Anderson and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210, 234-240 (2003). [CrossRef] [PubMed]
  9. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004). [CrossRef] [PubMed]
  10. P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004). [CrossRef]
  11. R. Milner, and D. Richards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc.,  202, 66-71 (2001). [CrossRef] [PubMed]
  12. I. Notingher, and A. Elfick, "Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips," J. Phys. Chem. B 109, 15699-15706 (2005). [CrossRef]
  13. M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, "Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy," J. Phys. Chem. B 107, 1574-1584 (2003). [CrossRef]
  14. Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip," J. Appl. Phys. 85, 1294-1301 (1999). [CrossRef]
  15. L. Novotny, R. Bian, and X. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  16. G. Kumar, C. Safvan, F. Rajgara and D. Mathur, "Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm-2," J. Phys. B 27, 2981-2991 (1994). [CrossRef]
  17. J. Weaver, and H. Frederikse, in CRC Handbook of Chemistry and Physics, edited by D. Lide (CRC Press, Boca Raton, FL, 1995), Sec. 12, p. 126.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited