OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5266–5278

Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide

M. Iodice, G. Mazzi, and L. Sirleto  »View Author Affiliations


Optics Express, Vol. 14, Issue 12, pp. 5266-5278 (2006)
http://dx.doi.org/10.1364/OE.14.005266


View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, static and dynamic thermo-optical numerical analysis of a Digital Optical Switch (DOS), based on amorphous silicon waveguide and operating at the infrared communications wavelength of 1550 nm, are presented. The aim of our design is to achieve good performances in terms of cross talk and switching time, considering relaxed requirements for the realization of device: large cross section single mode waveguides and an angle between the output branches not too small. Using a low temperature difference between the two output branches, an optical switching with a crosstalk of 25 dB and a response time of the order of ten microseconds are obtained. The device, designed for low-cost photonic applications, could be easily integrated in silicon optoelectronic circuits.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Integrated Optics

History
Original Manuscript: April 5, 2006
Revised Manuscript: May 27, 2006
Manuscript Accepted: May 28, 2006
Published: June 12, 2006

Citation
M. Iodice, G. Mazzi, and L. Sirleto, "Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide," Opt. Express 14, 5266-5278 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5266


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Silberberg, P. Perlmutter, and J. E. Baran, "Digital optical switch," Appl. Phys. Lett. 51, 1230-1232 (1978). [CrossRef]
  2. W. K. Burns, "Normal mode analysis of waveguide devices. Part I: theory," IEEE J. Lightwave Technol. 6, 1051-1057 (1988). [CrossRef]
  3. W. K. Burns, "Normal mode analysis of waveguide devices. Part II: Device output and crosstalk: theory," IEEE J. Lightwave Technol. 6, 1058-1068 (1988). [CrossRef]
  4. G J. M. Krijnen, H. J. W. M. Hoekstra, P. V. Lambeck, T. J. M. A. Pompa, "Simple analytical description of performance of Y junctions," Electron. Lett. 28, 2072-2074 (1992). [CrossRef]
  5. R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, "Performance and modeling of advanced Ti:LiNbO3," IEEE J. Lightwave Technol. 20, 92-99 (2002). [CrossRef]
  6. R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001). [CrossRef]
  7. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000). [CrossRef]
  8. M. N. Kahn, B. I. Miller, E.C. Burrows, and C. A. Burrus, "High-speed digital Y-branch switch/modulator with integrated passive tapers for fibre pigatailing," Electron. Lett. 35, 894-895 (1999). [CrossRef]
  9. R. Moosburger, and K. Petermann, "4×4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998). [CrossRef]
  10. D. Sun, Z. Liu, Y. Zha, W. Deng, Y. Zhang, and X. Li, "Thermo-optic waveguide digital optical switch using symmetrically coupled gratings," Opt. Express 13, 5463-5471 (2005). [CrossRef] [PubMed]
  11. C. Jang, and R. T. Chen, "Polymer-Based 1x6 Thermo-optic switch incorporating an Elliptic TIR Waveguide Mirror," IEEE J. Lightwave Technol. 21, 1053-1058 (2003). [CrossRef]
  12. W. H. G. Horsthuis, and M. B. J. Diemeer, "Components for multiple wavelength systems in polymer optoboard technology," IEEE LEOS 8th Annual Meeting Conference Proceedings 2, San Francisco, USA, 251-252 (1995). [CrossRef]
  13. N. Ooba, S. Toyoda, and T. Kurihara, "Low crosstalk and low loss 1×8 digital optical switch using silicone resin waveguides," Electron. Lett. 35, 1364-1365 (1999). [CrossRef]
  14. M. Hoffmann, P. Kopka, and E. Voges, "Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state," IEEE J. Lightwave Technol. 16, 395-400 (1998). [CrossRef]
  15. O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997). [CrossRef]
  16. M. Okamura, and S. Suzuki, "Infrared photodetection using a-Si:H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994). [CrossRef]
  17. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998). [CrossRef]
  18. L. Sirleto, M. Iodice, F. G. Della Corte, and I. Rendina, "Digital optical switch based on amorphous silicon waveguide," Opt. Eng. 42, 3417-3418 (2003). [CrossRef]
  19. OlympiOs Integrated Optics Software-Manual, http://www.c2v.nl.
  20. Ansys 9.0 Release Guide, 2005, http://www.ansys.com.
  21. S. Sujecki, T. M. Benson, P. Sewell, and P. Kendall, "Novel vectorial analysis of optical waveguides," IEEE J. Lightwave Technol. 16, 1329-1335 (1998). [CrossRef]
  22. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett. 8, 649-651 (1996). [CrossRef]
  23. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000). [CrossRef]
  24. S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," IEEE J. Lightwave Technol. 16, 1851-1853 (1998). [CrossRef]
  25. D. Y. Smith, E. Shiles, and M. Inokuti, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, San Francisco, CA, 1998).
  26. J. C. Sturm, W. Wilson, and M. Iodice, "Thermal effects and scaling in organic light emitting flat panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998). [CrossRef]
  27. I. Ilic, R. Scarmozzino, and R. M. Osgood, "Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits," IEEE J. Lightwave Technol. 14, 2813-2822 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited