OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5594–5606

Optical simulation of cholesteric liquid crystal displays using the finite-difference time-domain method

Chi-Lun Ting, Tsung-Hsien Lin, Chi-Chang Liao, and Andy Y. G. Fuh  »View Author Affiliations

Optics Express, Vol. 14, Issue 12, pp. 5594-5606 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The finite-difference time-domain (FDTD) method is a powerful numerical algorithm used to directly solve Maxwell’s equations. We introduce the idea of the FDTD method and the techniques required for optical simulation of cholesteric liquid crystal (Ch-LC) devices. Bragg reflection characteristics of Ch-LC cells are investigated using the FDTD method. Three approaches to broadening the bandwidth of Bragg reflection are demonstrated: (1) using a higher birefringence LC, (2) using a cell with a gradient pitch length, and (3) using a cell with a new multidimensional structure of a Ch-LC.

© 2006 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: March 16, 2006
Revised Manuscript: May 4, 2006
Manuscript Accepted: May 10, 2006
Published: June 12, 2006

Chi-Lun Ting, Tsung-Hsien Lin, Chi-Chang Liao, and Andy Y. Fuh, "Optical simulation of cholesteric liquid crystal displays using the finite-difference time-domain method," Opt. Express 14, 5594-5606 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Berreman, "Optics in stratified and anisotropic media: 4 × 4-matrix formulation," J. Opt. Soc. Am. 62,502-510 (1972). [CrossRef]
  2. K. S. Yee, "Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas. Propag. AP-14,302-307 (1966).
  3. A. Taflove, Computational Electromagnetic: The Finite-Difference Time-Domain Method (Artech House, 1995).
  4. A. Lien, "Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence," Appl. Phys. Lett. 57,2767-2769 (1990). [CrossRef]
  5. E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method," Opt. Commun. 177,69-77 (2000). [CrossRef]
  6. B. Witzigmann, P. Regli, and W. Fichtner, "Rigorous electromagnetic simulation of liquid crystal displays," J. Opt. Soc Am.  A 15,753-757 (1998). [CrossRef]
  7. C. M. Titus, P. J. Bos, J. R. Kelly, E. C. Gartland, "Two-dimensional optical simulation tool for microdisplay analysis," J. Appl. Phys. 38,1488-1494 (1999).
  8. E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D FDTD method," Opt. Commun. 177,69-77 (2000). [CrossRef]
  9. E. E. Kriezis, C. J. P. Newton, T. P. Spiller, and S. J. Elston, "Three-dimensional simulations of light propagation in periodic liquid-crystal microstructures," Appl. Opt. 41,25, 5346-5356 (2002). [CrossRef] [PubMed]
  10. D. K. Hwang and A. D. Rey, "Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain method," Appl. Opt. 44,21, 4513-4522 (2005). [CrossRef] [PubMed]
  11. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Physiol. 114,185-200 (1994). [CrossRef]
  12. J. P. Berenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas Propag. 44,110-117 (1996). [CrossRef]
  13. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons, 2001).
  14. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of the reflectivity and bistability in displays based on cholesteric liquid crystals," J. Appl. Phys. 76,1331-1333 (1994). [CrossRef]
  15. D.-K. Yang, L.-C. Chien, and Y. K. Fung, "Polymer stabilized cholesteric textures: materials and applications," in Liquid Crystals in Complex Geometries, G. P. Crawford and S. Zumer, eds. (Taylor & Francis, 1996), pp. 103-143.
  16. M. Xu, F. D. Xu, and D.-K. Yang, "Effects of cell structure on the reflection of cholesteric liquid crystal display," J. Appl. Phys. 83,1938-1955 (1998). [CrossRef]
  17. T. X. Hong and S.-T. Wu, "Optical wave propagation in a cholesteric liquid crystal using the finite element method," Liq. Cryst. 30,367-375 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited