OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5664–5670

Resonant and non-resonant generation and focusing of surface plasmons with circular gratings

Jennifer M. Steele, Zhaowei Liu, Yuan Wang, and Xiang Zhang  »View Author Affiliations


Optics Express, Vol. 14, Issue 12, pp. 5664-5670 (2006)
http://dx.doi.org/10.1364/OE.14.005664


View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the generation and focusing of surface plasmon polariton (SPP) waves from normally incident light on a planar circular grating milled into a silver film. The focusing mechanism is explained by using a simple coherent interference model of SPP generation on the circular grating by the incident field. Experimental results concur well with theoretical predictions and highlight the requirement for the phase matching of SPP sources in the grating to achieve the maximum enhancement of the SPP wave at the focal point. NSOM measurements show that the plasmonic lens achieves more than a 10-fold intensity enhancement over the intensity of a single ring of the in-plane field components at the focus when the grating design is tuned to the SPP wavelength. We discuss the technique’s adaptability for surface enhanced nano-scale spectroscopy.

© 2006 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(350.7420) Other areas of optics : Waves

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 25, 2006
Revised Manuscript: May 24, 2006
Manuscript Accepted: May 25, 2006
Published: June 12, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Jennifer M. Steele, Zhaowei Liu, Yuan Wang, and Xiang Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5664


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005). [CrossRef] [PubMed]
  2. E. Hutter, and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004). [CrossRef]
  3. S. A. Maier, and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  4. A. J. Haes, and R. P. Van Duyne, "A unified view of propagating and localized surface plasmon resonance biosensors," Anal. Bioanal. Chem. 379, 920-930 (2004). [CrossRef] [PubMed]
  5. J. B. Jackson, and N. J. Halas, "Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates," Proc. Natl. Acad. Sci. 101, 17930-17935 (2004). [CrossRef] [PubMed]
  6. C. L. Haynes, A. D. McFarland, R. P. Van Duyne, "Surface-enhanced Raman spectroscopy," Anal. Chem. 77, 338A-346A (2005). [CrossRef]
  7. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. L. Zou, "Plasmonic materials for surface-enhanced sensing and spectroscopy," MRS Bull. 30, 368-375 (2005). [CrossRef]
  8. A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005). [CrossRef]
  9. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002). [CrossRef]
  10. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Quantitative analysis of surface plasmon interaction with silver nanoparticles," Opt. Lett. 30, 1524-1526 (2005). [CrossRef] [PubMed]
  11. H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Surface plasmon polariton-based optical beam profiler," Opt. Lett. 29, 1408-1410 (2004). [CrossRef] [PubMed]
  12. M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, "Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology," Opto-Electron.Rev. 10, 217-224 (2002).
  13. F. Tam, C. Moran, and N. Halas, "Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment," J. Phys. Chem. B 108, 17290-17294 (2004). [CrossRef]
  14. N. Nath, and A. Chilkoti, "Label-free biosensing by surface plasmon resonance of nanoparticles on glass: Optimization of nanoparticle size," Anal. Chem. 76, 5370-5378 (2004). [CrossRef] [PubMed]
  15. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003). [CrossRef] [PubMed]
  16. A. D. McFarland, and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano. Lett. 3, 1057-1062 (2003). [CrossRef]
  17. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005). [CrossRef] [PubMed]
  18. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005). [CrossRef] [PubMed]
  19. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Surface plasmon propagation in an elliptical corral," Appl. Phys. Lett. 86, 074104 (2005). [CrossRef]
  20. Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," In press Appl. Phys. Lett (2006).
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Springer-Verlag: Berlin, 1988).
  22. H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Efficiency of local light-plasmon coupling," Appl. Phys. Lett. 83, 3665-3667 (2003). [CrossRef]
  23. J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett. 87, 221101 (2005). [CrossRef]
  24. J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A. L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406 (2004). [CrossRef]
  25. S. H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005). [CrossRef] [PubMed]
  26. J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, "Surface plasmon transmission across narrow grooves in thin silver films," Appl. Phys. Lett. 82, 1368-1370 (2003). [CrossRef]
  27. A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, "Plasmon optics of structured silver films," Phys. Rev. B 63, 155404 (2001). [CrossRef]
  28. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano. Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  29. P. B. Johnson, and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  30. S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, "Independent optically addressable nanoparticle-polymer optomechanical composites," Appl. Phys. Lett. 80, 4609-4611 (2002). [CrossRef]
  31. N. Halas, "Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells," MRS Bull. 30, 362-367 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited