OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5682–5687

Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling

Gilles Renversez, Philippe Boyer, and Angelo Sagrini  »View Author Affiliations

Optics Express, Vol. 14, Issue 12, pp. 5682-5687 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using two different modal methods, the multipole method and the more recent fast Fourier factorization method, we exhibit and explain a core mode transition induced by avoided crossing between a core localized leaky mode and an high-index cylinder leaky mode in anti-resonant reflecting optical waveguide microstructured optical fibers (ARROW MOFs). Due to its wavelength selectivity and to the leaky nature of the involved modes, this transition does not seem to have already been described in detail and analyzed as done in this work in spite of several already published studies on core mode dispersion properties. The main properties of this transition are also described. We also revisit the already mentioned cut-off phenomena limiting the transmission band in ARROW MOFs in terms of mode coupling between the core mode and one or several high-index cylinder modes.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Photonic Crystal Fibers

Original Manuscript: February 14, 2006
Revised Manuscript: May 3, 2006
Manuscript Accepted: May 3, 2006
Published: June 12, 2006

Gilles Renversez, Philippe Boyer, and Angelo Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N.M. Lichinitser, S. C. Dunn, P. E. Steinwuzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C.M. de Sterke, "Application of an ARROWmodel for designing tunable photonic devices," Opt. Express 12:1540-1550 (2004). [CrossRef]
  2. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. Russell, "Photonic bandgap with an index step of one percent," Opt. Express,  13309-314 (2005). [CrossRef] [PubMed]
  3. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, andM. Douay, "Fabrication and characterization of an all solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express,  138452-8459 (2005). [CrossRef] [PubMed]
  4. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Lichinitser, and B. J. Eggleton, "Resonance and scaterring in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  5. J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A: Pure Appl. Opt. 6, 798-804 (2004). [CrossRef]
  6. A. Sagrini, G. Renversez, and P. Boyer. "Transition de d´elocalisation du mode de coeur des fibres microstructurees anti-resonantes par anticroisement des modes a pertes," in Journees Nationales d’Optique Guidee (Societe Francaise d’Optique, Chambery, France, November 2005), 183-185.
  7. B. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L.C. Botten, C. Martijn de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers II: implementation and results," J. Opt. Soc. Am. B 10, 2331-2340 (2002). [CrossRef]
  8. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres, (Imperial College Press, London, 2005). [CrossRef]
  9. P. Boyer, M. Nevi`ere, E. Popov, and G. Renversez, "Diffraction theory : Application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section lighted in conical mounting," J. Opt. Soc. Am. A 23, 1146-1158 (2006). [CrossRef]
  10. D. Marcuse, Theory of Dielectric Optical Waveguides, (Academic Press, San Diego, 2nd edition, 1991).
  11. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in omniguide fibers," Opt. Express 11, 1175-1196 (2003). [CrossRef] [PubMed]
  12. K. Saitoh, N. A. Mortensen, and M. Koshiba. "Air-core photonic bang-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004). [CrossRef] [PubMed]
  13. G. Renversez, F. Bordas, and B. T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size," Opt. Lett. 30, 1264-1266 (2005). [CrossRef] [PubMed]
  14. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. S. Russell, "Scaling law and vectors effects in bandgap-guiding fibres," Opt. Lett. 12, 69-74 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited