OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5699–5714

Comparison of different methods for rigorous modeling of photonic crystal fibers

Marcin Szpulak, Waclaw Urbanczyk, Evgenii Serebryannikov, Aleksei Zheltikov, Amit Hochman, Yehuda Leviatan, Rafal Kotynski, and Krassimir Panajotov  »View Author Affiliations

Optics Express, Vol. 14, Issue 12, pp. 5699-5714 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (870 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a summary of the simulation exercise carried out within the EC Cost Action P11 on the rigorous modeling of photonic crystal fiber (PCF) with an elliptically deformed core and noncircular air holes with a high fill factor. The aim of the exercise is to calculate using different numerical methods and to compare several fiber characteristics, such as the spectral dependence of the phase and the group effective indices, the birefringence, the group velocity dispersion and the confinement losses. The simulations are performed using four rigorous approaches: the finite element method (FEM), the source model technique (SMT), the plane wave method (PWM), and the localized function method (LFM). Furthermore, we consider a simplified equivalent fiber method (EFM), in which the real structure of the holey fiber is replaced by an equivalent step index waveguide composed of an elliptical glass core surrounded by air cladding. All these methods are shown to converge well and to provide highly consistent estimations of the PCF characteristics. Qualitative arguments based on the general properties of the wave equation are applied to explain the physical mechanisms one can utilize to tailor the propagation characteristics of nonlinear PCFs.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Photonic Crystal Fibers

Original Manuscript: March 3, 2006
Revised Manuscript: April 28, 2006
Manuscript Accepted: May 1, 2006
Published: June 12, 2006

Marcin Szpulak, Waclaw Urbanczyk, Evgenii Serebryannikov, Aleksei Zheltikov, Amit Hochman, Yehuda Leviatan, Rafal Kotynski, and Krassimir Panajotov, "Comparison of different methods for rigorous modeling of photonic crystal fibers," Opt. Express 14, 5699-5714 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  4. C. M. Bowden and A. M. Zheltikov, eds., "Nonlinear optics of Photonic Crystals," Feature issue of J. Opt. Soc. Am. B 19, (2002).
  5. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003). [CrossRef] [PubMed]
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  7. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004). [CrossRef]
  8. H. N. Paulsen, K.M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). [CrossRef] [PubMed]
  9. I. Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  10. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. BakerJr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, "Enhanced two-photon biosensing with double-clad photonic crystal fibers," Opt. Lett. 28, 1224-1226 (2003). [CrossRef] [PubMed]
  11. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10,609-613 (2002). [PubMed]
  12. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  13. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, "Full-vector analysis of a realistic photonic crystal fiber modes," Opt. Lett. 24,276-278 (1999). [CrossRef]
  14. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8,173-190 (2001). [CrossRef] [PubMed]
  15. N. A. Issa and L. Poladian, "Vector wave expansion method for leaky modes of microstructured optical fibers," J. Lightwave Technol. 21, 1005-1012 (2003). [CrossRef]
  16. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  17. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002). [CrossRef]
  18. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, "Modelling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000). [CrossRef]
  19. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botton, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19,2322-2330 (2002). [CrossRef]
  20. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botton, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19,2331-2340 (2002). [CrossRef]
  21. A. Hochman and Y. Leviatan, "Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique," J. Opt. Soc. Am. A 21, 1073-1081, (2004). [CrossRef]
  22. Z. Zhu and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002). [PubMed]
  23. S. O. Konorov and A. M. Zheltikov, "Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation," Opt. Express 11,2440-2445 (2003). [CrossRef] [PubMed]
  24. R. B. Dyott, Elliptical fiber waveguides (Artech House Optoelectronics Library, 1995).
  25. M. Koshiba, S. Maruyama, and K. Hirayama, "A vector finite element method with the higher order mixed-interpolation-type triangular elements for optical waveguide problems," J. Lightwave Technol. 12, 495-502 (1994). [CrossRef]
  26. H. S. Sözüer and J. W. Haus, "Photonic bands: convergence problems with the plane-wave method," Phys. Rev. B 45, 13962-13972 (1992). [CrossRef]
  27. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers, " Opt. Lett. 26, 488-490 (2001). [CrossRef]
  28. A. Hochman and Y. Leviatan, "Calculation of confinement losses in photonic crystal fibers by use of a source-model technique," J. Opt. Soc. Am. B 22, 474-480 (2005). [CrossRef]
  29. A. Hochman and Y. Leviatan, "A spurious-free Source-Model Technique for modal waveguide analysis," CCIT Report #521, EE Dept., Technion Israel Inst. of Technology, March 2005, online: http://www2.ee.technion.ac.il/CCIT/info/Publications/Articles/521.pdf.
  30. A. Hochman and Y. Leviatan, "Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins," Opt. Express 13,6193-6201 (2005). [CrossRef] [PubMed]
  31. R. Kotynski, M. Antkowiak, F. Berghmans, H. Thienpont, and K. Panajotov, "Photonic crystal fibers with material anisotropy," Opt. Quantum. Electron. 37,253-264 (2005). [CrossRef]
  32. A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16,1667-1669 (2004). [CrossRef]
  33. C. Yeh, "Elliptical dielectric waveguides," J. Appl. Phys. 33,3235-3243 (1962). [CrossRef]
  34. A. W. Snydera and J. D. Love, Optical Waveguide Theory (London, Chapman and Hall, 1983).
  35. T. P. White, R. C. McPhedram, C. M. de Sterke, L. C. Botten, and M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26,1660-1662 (2001). [CrossRef]
  36. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1314-1319 (2002). [PubMed]
  37. V. Rastogi and K. S. Chiang, "Holey optical fiber with circularly distributed holes, analyzed by the radial effective-index method," Opt. Lett. 28, 2449-2451 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited