OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5733–5745

Polarization singularities of focused, radially polarized fields

R. W. Schoonover and T. D. Visser  »View Author Affiliations

Optics Express, Vol. 14, Issue 12, pp. 5733-5745 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The state of polarization of strongly focused, radially polarized electromagnetic fields is examined. It is found that several types of polarization singularities exist. Their relationship is investigated, and it is demonstrated that on smoothly varying a system parameter, such as the aperture angle of the lens, different polarization singularities can annihilate each other. For example, the evolution of a lemon into a monstar and its subsequent annihilation with a star is studied. Also, the quite rare collision of a C-line and an L-line, resulting in a V-point, is observed.

© 2006 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(140.3300) Lasers and laser optics : Laser beam shaping
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: April 24, 2006
Revised Manuscript: May 17, 2006
Manuscript Accepted: May 17, 2006
Published: June 12, 2006

R. W. Schoonover and T. D. Visser, "Polarization singularities of focused, radially polarized fields," Opt. Express 14, 5733-5745 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.F. Nye and M.V. Berry, "Dislocations in wave trains," Proc. R. Soc. Lond. A 336, 165-190 (1974). [CrossRef]
  2. J.F. Nye, Natural Focusing and Fine Structure of Light (IOP Publishing, Bristol, 1999).
  3. M.S. Soskin and M.V. Vasnetsov, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 2001), Vol. 42. [CrossRef]
  4. G.P. Karman, M.W. Beijersbergen, A. van Duijl, and J.P. Woerdman, "Creation and annihilation of phase singularities in a focal field," Opt. Lett. 22, 1503-1505 (1997). [CrossRef]
  5. H.F. Schouten, T.D. Visser, D. Lenstra and H. Blok, "Light transmission through a sub-wavelength slit: waveguiding and optical vortices," Phys. Rev. E 67, 036608 (2003). [CrossRef]
  6. H.F. Schouten, G. Gbur, T.D. Visser, D. Lenstra and H. Blok, "Creation and annihilation of phase singularities near a sub-wavelength slit," Opt. Express 11, 371-380 (2003) [CrossRef] [PubMed]
  7. H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra and H. Blok, "Diffraction of light by narrow slits in plates of different materials," J. Opt. A 6, S277-S280 (2004). [CrossRef]
  8. D.W. Diehl and T.D. Visser, "Phase singularities of the longitudinal field components in high-aperture systems," J. Opt. Soc. Am. A 21, 2103-2108 (2004). [CrossRef]
  9. H.F. Schouten, G. Gbur, T.D. Visser and E. Wolf, "Phase singularities of the coherence functions in Young’s interference pattern," Opt. Lett. 28, 968-970 (2003). [CrossRef] [PubMed]
  10. G. Gbur and T.D. Visser, "Coherence vortices in partially coherent beams," Opt. Commun. 222, 117-125 (2003). [CrossRef]
  11. D.G. Fischer and T.D. Visser, "Spatial correlation properties of partially coherent focused fields," J. Opt. Soc. Am. A 21, 2097-2102 (2004). [CrossRef]
  12. G. Gbur and T.D. Visser, "Phase singularities and coherence vortices in linear optical systems," Opt. Commun. 259, 428-435 (2005). [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, seventh (expanded) ed. (Cambridge University Press, Cambridge, 1999). [PubMed]
  14. M.V. Berry and M.R. Dennis, "Polarization singularities in isotropic random vector waves," Proc. R. Soc. Lond. A 457, pp. 141-155 (2001). [CrossRef]
  15. M.R. Dennis, "Polarization singularities in paraxial vector fields: morphology and statistics," Opt. Commun. 213, pp. 201-221 (2002). [CrossRef]
  16. I. Freund, A.I. Mokhun, M.S. Soskin, O.V. Angelsky, and I.I. Mokhun, "Stokes singularity relations," Opt. Lett. 27, pp. 545-547 (2002). [CrossRef]
  17. M.S. Soskin, V. Denisenko, and I. Freund, "Optical polarization singularities and elliptic stationary points," Opt. Lett. 28, pp. 1475-1477 (2003). [CrossRef] [PubMed]
  18. A.I. Mokhun, M.S. Soskin, and I. Freund, "Elliptic critical points: C -points, a -lines, and the sign rule," Opt. Lett. 27, pp. 995-997 (2002). [CrossRef]
  19. T.D. Visser and J.T. Foley, "On the wavefront-spacing of focused, radially polarized beams," J. Opt. Soc. Am. A 22, pp. 2527-2531 (2005). [CrossRef]
  20. D.W. Diehl, R.W. Schoonover and T.D. Visser, "The structure of focused, radially polarized fields," Opt. Express 14, pp. 3030-3038 (2006), [CrossRef] [PubMed]
  21. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. Royal Soc. A 253, pp. 358-379 (1959). [CrossRef]
  22. J.D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Sec. 7.2.
  23. V.G. Denisenko, R.I. Egorov and M.S. Soskin, "Measurement of the morphological forms of polarization singularities and their statistical weight in optical vector fields," JETP Lett. 80, pp. 17-19 (2004). [CrossRef]
  24. I. Freund, "Polarization singularity indices in Gaussian laser beams," Opt. Commun. 201, pp. 251-270 (2002). [CrossRef]
  25. E.T. Copson, An Introduction to the Theory of Functions of a Complex Variable (Oxford University Press, London, 1935). See especially Sec. 4.51.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2144 KB)     
» Media 2: MOV (181 KB)     
» Media 3: MOV (1265 KB)     
» Media 4: MOV (990 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited