OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5746–5754

Discrete dipole approximation for magnetooptical scattering calculations

Damon A. Smith and Kevin L. Stokes  »View Author Affiliations


Optics Express, Vol. 14, Issue 12, pp. 5746-5754 (2006)
http://dx.doi.org/10.1364/OE.14.005746


View Full Text Article

Enhanced HTML    Acrobat PDF (1903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Magneto-optical spectra (Faraday effect) for nanometer-scale particles and collections of particles are calculated using a modification of the discrete dipole approximation (DDA). The approximation is used as a finite-element method for non-spherical particles whose dimensions are on the order of or smaller than the incident light wavelength, λ. Also, we use the approximation to calculate scattering from arrangements of spherical nanoparticles with diameters ≪λ. We propose that for scattering from subwavelength magnetic particles, the specific Faraday rotation should be defined as the difference in optical extinction for left- and right-circularly polarized light. We apply the model to calculations of Faraday rotation from magnetite nanowires as well as a binary (two-component) nanoparticle arrangement. Enhancements in Faraday rotation are predicted for composites containing both noble metal and ferrite nanoparticles.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.3820) Materials : Magneto-optical materials
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: March 8, 2006
Revised Manuscript: May 9, 2006
Manuscript Accepted: May 11, 2006
Published: June 12, 2006

Citation
Damon A. Smith and Kevin L. Stokes, "Discrete dipole approximation for magneto-optical scattering calculations," Opt. Express 14, 5746-5754 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5746


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface enhanced Raman scattering," Phys. Rev. B. 65, 075419 (2002). [CrossRef]
  2. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, "Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes," J. Chem. Phys. 103, 869 (1995). [CrossRef]
  3. F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured materials," Phys. Rev. B. 66, 155412 (2002). [CrossRef]
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B. 62, R16356 (2000). [CrossRef]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A route to nanoscale optical devices," Adv. Mater. 13, 1501 (2001). [CrossRef]
  6. S. A. Maier, P. G. Kik, M. L. Brongersma, H. A. Atwater, S. Meltzer, A. A. G. Requicha, and B. K. Koel, "Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit," in Mat. Res. Soc. Symp. Proc., vol. 722, R. B. Wehrspohn, S. Noda, C.Soukoulis, and R. Marz, Eds. (Warrendale, PA, MRS, 2002), p. L6.2.
  7. V. M. Shalaev, V. A. Podolskiy, and A. K. Sarychev, "Plasmonic nanophotonics: Manipulating light and sensing molecules," in Proceedings of SPIE vol. 4806, Complex Mediums III: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, G. Dewar, and M. W. McCall, Eds. (Bellingham, WA, SPIE, 2002), p. 32.
  8. L. L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343 (2003). [CrossRef]
  9. A. A. Lazarides and G. C. Schatz, "DNA-linked metal nanosphere materials: Structural basis for the optical properties," J. Phys. Chem. B 104, 460 (2000). [CrossRef]
  10. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735 (2003). [CrossRef] [PubMed]
  11. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A: Pure Appl. Opt. 7, S32 (2005). [CrossRef]
  12. D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, "Magneto-optical spectra of closely-spaced magnetite nanoparticles," J. Appl. Phys. 97, 10M504 (2005). [CrossRef]
  13. J. D. Jackson, Classical Electrodynamics, 3rd ed. (New York, John Wiley and Sons, Inc., 1999).
  14. B. T. Draine, "The discrete dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848 (1988). [CrossRef]
  15. A. H. Sihvola, "Dielectric polarizability of a sphere with arbitrary anisotropy," Opt. Lett. 19, 430 (1994). [CrossRef] [PubMed]
  16. K. Hinsen, A. Bratz, and B. U. Felderhof, "Anisotropic dielectric tensor and the Hall effect in a suspension of spheres," Phys. Rev. B. 23, 14995 (1992). [CrossRef]
  17. B. T. Draine and J. Goodman, "Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation," Astrophys. J. 405, 685 (1993). [CrossRef]
  18. A. Rahmani, P. C. Chaumet, and G. W. Bryant, "On the importance of local-field corrections for polarizable particles on a finite lattice: Application to the discrete dipole approximation," Astrophys. J. 607, 873 (2004). [CrossRef]
  19. P. S. Pershan, "Magneto-optical effects," J. Appl. Phys. 38, 1482 (1967). [CrossRef]
  20. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (London, Institute of Physics Publishing, 1997). [CrossRef]
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (New York, John Wiley and Sons, 1983).
  22. Wolfram Research, Inc., Mathematica, Version 5.1, Champaign, IL (2004).
  23. The MathWorks Inc, MATLAB version 6.5.1, Natick, Massachusetts (2003).
  24. A. Schlegel, S. F. Alvarado, and P. Wachter, "Optical properties of magnetite (Fe3O4)," J. Phys. C: Solid State Phys. 12, 1157 (1979). [CrossRef]
  25. X. Zhang, J. Schoenes, and P. Wachter, "Kerr-effect and dielectric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV," Solid State Commun. 39, 189 (1981). [CrossRef]
  26. M. R. Pufall, A. Berger, and S. Schultz, "Measurement of the scattered light magneto-optical Kerr effect from plasmon-resonant Ag particles near a magnetic film," J. Appl. Phys. 81, 5689 (1997). [CrossRef]
  27. Y. Li, Q. Zhang, A. V. Nurmikko, and S. Sun, "Enhanced magneto-optical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs," Nano Lett. 5, 1689 (2005). [CrossRef] [PubMed]
  28. G. Shemer and G. Markovich, "Enhancement of magneto-optical effects in magnetite near gold surfaces," J. Phys. Chem. B 106, 9195 (2002). [CrossRef]
  29. V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, and J. Peretti, "Magneto-optical effects enhanced by surface plasmons in metallic multilayer films," Phys. Rev. Lett. 73, 3584 (1994). [CrossRef] [PubMed]
  30. T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, "Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films," Phys. Rev. Lett. 60, 1426 (1988). [CrossRef] [PubMed]
  31. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, "Surface-enhanced magneto-optics in metallic multilayer films," Phys. Rev. B. 64, 235422 (2001). [CrossRef]
  32. V. A. Kosobukin, "Magneto-optics via the near field," Surf. Science 406, 32 (1998). [CrossRef]
  33. W. F. J. Fontijn, P. J. van der Zaag, and L. F. Feiner, "A consistent interpretation of the magneto-optical spectra of spinel-type ferrites," J. Appl. Phys. 85, 5100 (1999). [CrossRef]
  34. W. D. Martens, W. L. Peeters, and H. M. van NoortM. Erman, "Optical, magneto-optical and Mossbauer spectroscopy on Co3+ substituted cobalt ferrite," J. Phys. Chem. Solids 46, 411 (1985). [CrossRef]
  35. P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972). [CrossRef]
  36. E. V. Shevchenko, D. V. Talapin, C. B. Murray, and S. O'Brien, "Structural characterization of self-assembled multifunctional binary nanoparticle superlattices," J. Am. Chem. Soc. 128, 3620 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited