OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 5866–5876

Low distortion Brillouin slow light in optical fibers using AM modulation

Aldo Minardo, Romeo Bernini, and Luigi Zeni  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 5866-5876 (2006)
http://dx.doi.org/10.1364/OE.14.005866


View Full Text Article

Enhanced HTML    Acrobat PDF (147 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stimulated Brillouin scattering (SBS) has been recently shown to offer a mechanism for generating tunable all-optical delays in room-temperature single-mode optical fibers at telecommunication wavelengths. This technique makes use of the rapid variation of the refractive index that occurs in the vicinity of the Brillouin gain resonance. When the slow light pulse delay is subject to a constraint on the allowable pulse distortion, it has been shown that the use of a pair of closely-spaced Brillouin gain lines can increase the distortion-constrained delay, with respect to the single-line configuration. In this paper, we numerically and experimentally demonstrate that the same experimental apparatus usually employed for generating a Brillouin gain doublet, can also be used for achieving three equally-spaced Brillouin gain resonances, further increasing the distortion-constrained pulse delay.

© 2006 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 24, 2006
Revised Manuscript: May 24, 2006
Manuscript Accepted: June 5, 2006
Published: June 26, 2006

Citation
Aldo Minardo, Romeo Bernini, and Luigi Zeni, "Low distortion Brillouin slow light in optical fibers using AM modulation," Opt. Express 14, 5866-5876 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-5866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999). [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature," Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  3. 3. J. Sharping, Y. Okawachi, and A. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005). [CrossRef] [PubMed]
  4. K. Y. Song, M. G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005). [CrossRef] [PubMed]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  6. K. Song, M. Herráez, and L. Thévenaz, "Long optically controlled delays in optical fibers," Opt. Lett. 30, 1782-1784 (2005). [CrossRef] [PubMed]
  7. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005). [CrossRef]
  8. H. Cao, A. Dogariu, and L. J. Wang, "Negative group delay and pulse compression in superluminal pulse propagation," IEEE J. Sel. Top. Quantum Electron. 9, 52-58 (2003). [CrossRef]
  9. B. Macke and B. Ségard, "Propagation of light-pulses at a negative group-velocity," European Phys. J. D 23, 125-141 (2003). [CrossRef]
  10. M. Bashkansky, G. Beadie, Z. Dutton, F. K. Fatemi, J. Reintjes, and M. Steiner, "Slow-light dynamics of large bandwidth pulses in warm rubidium vapor," Phys. Rev. A 72, 033819 (2005). [CrossRef]
  11. Z. Dutton, M. Bashkansky, M. Steiner, and J. Reintjes, "Channelization architecture for wide-band slow light in atomic vapors," SPIE 5735, 115-129 (2005). [CrossRef]
  12. Q. Sun, Y. V. Rostovtsev, J. P. Dowling, M. O. Scully, and M. S. Zhubairy, "Optically controlled delays for broadband pulses," Phys. Rev. A 72 031802(R) (2005). [CrossRef]
  13. M. Stenner, M. Neifeld, Z. Zhu, A. Dawes, and D. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005). [CrossRef] [PubMed]
  14. K. Song, M. González Herráez, and L. Thévenaz, "Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers," Opt. Express 13, 9758-9765 (2005). [CrossRef] [PubMed]
  15. M. González Herráez, K. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006). [CrossRef] [PubMed]
  16. Z. Zhu, A.M.C. Dawes, D.J. Gauthier, L. Zhang, and A.E. Willner, "12-GHz-Bandwidth SBS Slow Light in Optical Fibers," postdeadline paper PDP1, OFC 2006, Anaheim, CA, Mar. 5-10, 2006.
  17. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005). [CrossRef] [PubMed]
  18. A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2nd Ed. (Prentice Hall, Upper Saddle River, 1997).
  19. G. P. Agrawal, Nonlinear fiber optics, 3th Ed. (Academic Press, Boston, 2001).
  20. M. Nikles, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited