OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6113–6127

Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis

Phaneendra K. Yalavarthy, Hamid Dehghani, Brian W. Pogue, and Keith D. Paulsen  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 6113-6127 (2006)
http://dx.doi.org/10.1364/OE.14.006113


View Full Text Article

Enhanced HTML    Acrobat PDF (688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The image resolution and contrast in Near-Infrared (NIR) tomographic image reconstruction are affected by parameters such as the number of boundary measurements, the mesh resolution in the forward calculation and the reconstruction basis. Increasing the number of measurements tends to make the sensitivity of the domain more uniform reducing the hypersensitivity at the boundary. Using singular-value decomposition (SVD) and reconstructed images, it is shown that the numbers of 16 or 24 fibers are sufficient for imaging the 2D circular domain for the case of 1% noise in the data. The number of useful singular values increases as the logarithm of the number of measurements. For this 2D reconstruction problem, given a computational limit of 10 sec per iteration, leads to choice of forward mesh with 1785 nodes and reconstruction basis of 30×30 elements. In a three-dimensional (3D) NIR imaging problem, using a single plane of data can provide useful images if the anomaly to be reconstructed is within the measurement plane. However, if the location of the anomaly is not known, 3D data collection strategies are very important. Further the quantitative accuracy of the reconstructed anomaly increased approximately from 15% to 89% as the anomaly is moved from the centre to boundary, respectively. The data supports the exclusion of out of plane measurements may be valid for 3D NIR imaging.

© 2006 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 3, 2006
Revised Manuscript: June 19, 2006
Manuscript Accepted: June 20, 2006
Published: June 26, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Phaneendra K. Yalavarthy, Hamid Dehghani, Brian W. Pogue, and Keith D. Paulsen, "Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis," Opt. Express 14, 6113-6127 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-6113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Signal Process. Mag. 18, 57-75 (2001). [CrossRef]
  2. B. W. Pogue, M. Testorf, T. Mcbride, U. L. Osterberg, and K. D. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,".Opt. Express 1, 391-403 (1997). [CrossRef] [PubMed]
  3. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100,12349-12354 (2003). [CrossRef] [PubMed]
  4. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 42, 4155-4166 (2002). [CrossRef]
  5. N. Ramanujam, G. Vishnoi, A. H. Hielscher, M. E. Rode, I. Forouzan and B. Chance, "Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies," J. Biomed. Opt. 5, 173-184 (2000). [CrossRef] [PubMed]
  6. S. R. Arridge, "Optical tomography in medical imaging," Inv.Problems 5, R41-R93 (1999). [CrossRef]
  7. N. Polydorides1 and H. McCann, "Electrode configurations for improved spatial resolution in electrical impedance tomography," Meas. Sci. Technol. 13, 1862-1870 (2002). [CrossRef]
  8. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  9. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004). [CrossRef]
  10. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003). [CrossRef] [PubMed]
  11. J. P. Culver, V. Ntziachristos, M. J. Holboke and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis," App. Opt. 26, 701-703 (2001).
  12. H. Dehghani, B. W. Pogue S. P. Poplack and K. D. Paulsen, "Multiwavelength three dimensional near infrared tomography of the breast: Initial simulation, phantom and clinical results," App. Opt. 42, 135-145 (2003). [CrossRef]
  13. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three dimensional optical tomography: Resolution in small object imaging," App. Opt. 42, 3117-3128 (2003). [CrossRef]
  14. H. Dehghani, B. W. Pogue, S. Jiang, S. Poplack and K. D. Paulsen, "Optical images from Pathophysiological signals within breast tissue using three-dimensional near-infrared light," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 191-198 (2003).
  15. B. W. Pogue, S. Geimer, T. Mcbride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, "Three-dimensional simulation of near-infrared diffusion in tissue: boundary conditions and geometry analysis for a finite element reconstruction algorithm," Appl. Opt. 40, 588-600 (2001). [CrossRef]
  16. J. C. Hebden, H. Veenstra, H. H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three dimensional time-resolved optical tomography of a conical breast phantom," App. Opt. 40, 3278-3287 (2001). [CrossRef]
  17. A. Gibson, R. M. Yusof, E. M. C. Hillman, H. Dehghani, J. Riley, N. Everdale, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Optical tomography of a realistic neonatal head phantom," Appl. Opt. 42, 3109-3116 (2003). [CrossRef] [PubMed]
  18. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance and A. G. Yodh, "Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging," Med. Phys. 30, 235-247 (2003). [CrossRef] [PubMed]
  19. H. Jiang, K. D. Paulsen, and U. Osterberg, B. W. Pogue and MichaelS. Patterson, "Optical image reconstruction using frequency domain data: simulations and experiments," J. Opt. Soc. Am. A 13, 253-266 (1996). [CrossRef]
  20. M. Schweiger, S R Arridge, M Hiroaka and D T Delpy, "The finite element model for the propagation of light in scattering media: Boundary and source Conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  21. S. R. Arridge and M. Schweiger, "Photon-measurement density functions. Part2: Finite-element-method calculations," App. Opt. 34, 8026-8037 (1995). [CrossRef]
  22. B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W Pogue, and K. D Paulsen, "Magnetic resonance guided near infrared tomography of the breast", Rev. Sci. Inst. 75, 5262-5270 (2004). [CrossRef]
  23. M. Schweiger and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2722 (1999). [CrossRef] [PubMed]
  24. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. Patterson, "Improved continuous light diffusion imaging in single and multiple target tissue-like phantoms," Phys. Med. Biol. 43, 675-693 (1998). [CrossRef] [PubMed]
  25. Q. Zhu, N. G. Chen, and S. C. Kurtzman, "Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound," Opt. Lett. 28, 337 - 339 (2003). [CrossRef] [PubMed]
  26. M. Molinari, B. H. Blott, S. J. Cox, and G. J. Daniell, "Optimal imaging with adaptive mesh refinement in electrical impedance tomography," Physiol. Meas. 23, 121-128 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited