OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6128–6141

Do GSM 900MHz signals affect cerebral blood circulation? A near-infrared spectrophotometry study

Martin Wolf, Daniel Haensse, Geert Morren, and Juerg Froehlich  »View Author Affiliations

Optics Express, Vol. 14, Issue 13, pp. 6128-6141 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Effects of GSM 900MHz signals (EMF) typical for a handheld mobile phone on the cerebral blood circulation were investigated using near-infrared spectrophotometry (NIRS) in a three armed (12W/kg, 1.2W/kg, sham), double blind, randomized crossover trial in 16 healthy volunteers. During exposure we observed borderline significant short term responses of oxyhemoglobin and deoxyhemoglobin concentration, which correspond to a decrease of cerebral blood flow and volume and were smaller than regular physiological changes. Due to the relatively high number of statistical tests, these responses may be spurious and require further studies. There was no detectable dose-response relation or long term response within 20min. The detection limit was a fraction of the regular physiological changes elicited by functional activation. Compared to previous studies using PET, NIRS provides a much higher time resolution, which allowed investigating the short term effects efficiently, noninvasively, without the use of radioactive tracers and with high sensitivity.

© 2006 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 28, 2006
Revised Manuscript: June 16, 2006
Manuscript Accepted: June 16, 2006
Published: June 26, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Martin Wolf, Daniel Haensse, Geert Morren, and Juerg Froehlich, "Do GSM 900MHz signals affect cerebral blood circulation? A near-infrared spectrophotometry study," Opt. Express 14, 6128-6141 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Borbely, R. Huber, T. Graf, B. Fuchs, E. Gallmann, and P. Achermann, "Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram," Neurosci. Lett. 275, 207-210 (1999). [CrossRef] [PubMed]
  2. R. Huber, T. Graf, K. A. Cote, L. Wittmann, E. Gallmann, D. Matter, J. Schuderer, N. Kuster, A. A. Borbely, and P. Achermann, "Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep EEG," Neuroreport 11, 3321-3325 (2000). [CrossRef] [PubMed]
  3. R. Huber, V. Treyer, A. A. Borbely, J. Schuderer, J. M. Gottselig, H. P. Landolt, E. Werth, T. Berthold, N. Kuster, A. Buck, and P. Achermann, "Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG," J. Sleep. Res. 11, 289-295 (2002). [CrossRef] [PubMed]
  4. R. Huber, J. Schuderer, T. Graf, K. Jutz, A. A. Borbely, N. Kuster, and P. Achermann, "Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate," Bioelectromagnetics 24, 262-276 (2003). [CrossRef] [PubMed]
  5. R. Huber, V. Treyer, J. Schuderer, T. Berthold, A. Buck, N. Kuster, H. P. Landolt, and P. Achermann, "Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow," Eur. J. Neurosci. 21, 1000-1006 (2005). [CrossRef] [PubMed]
  6. S. Aalto, C. Haarala, A. Bruck, H. Sipila, H. Hamalainen, and J. O. Rinne, "Mobile phone affects cerebral blood flow in humans," J. Cereb. Blood Flow Metab. (2006).
  7. H. Obrig and A. Villringer, "Beyond the visible--imaging the human brain with light," J. Cereb. Blood Flow Metab. 23, 1-18 (2003). [CrossRef]
  8. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997). [CrossRef] [PubMed]
  9. Y. Hoshi, "Functional near-infrared optical imaging: utility and limitations in human brain mapping," Psychophysiology 40, 511-520 (2003). [CrossRef] [PubMed]
  10. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, "Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study," Neuroimage 16, 704-712 (2002). [CrossRef] [PubMed]
  11. V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, E. Gratton, and D. Hueber, "Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging," Med. Phys. 28, 521-527 (2001). [CrossRef] [PubMed]
  12. K. Villringer, S. Minoshima, C. Hock, H. Obrig, S. Ziegler, U. Dirnagl, M. Schwaiger, and A. Villringer, "Assessment of local brain activation. A simultaneous PET and near-infrared spectroscopy study," Adv. Exp. Med. Biol. 413, 149-153 (1997). [PubMed]
  13. D. Haensse, P. Szabo, D. Brown, J. C. Fauchere, P. Niederer, H. U. Bucher, and M. Wolf, "New multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates," Opt. Express 13, 4525-4538 (2005). [CrossRef] [PubMed]
  14. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, "Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation," Biochim. Biophys. Acta 933, 184-192 (1988). [CrossRef] [PubMed]
  15. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, "Performance comparison of several published tissue near-infrared spectroscopy algorithms," Anal. Biochem. 227, 54-68 (1995). [CrossRef] [PubMed]
  16. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996). [CrossRef] [PubMed]
  17. A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, "Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy," J. Appl. Physiol. 75, 1884-1889 (1993). [PubMed]
  18. M. Wolf, N. Brun, G. Greisen, M. Keel, K. von Siebenthal, and H. Bucher, "Optimising the methodology of calculating the cerebral blood flow of newborn infants from near infra-red spectrophotometry data," Med. Biol. Eng. Comput. 34, 221-226 (1996). [CrossRef] [PubMed]
  19. E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003). [CrossRef] [PubMed]
  20. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005). [CrossRef] [PubMed]
  21. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004). [CrossRef] [PubMed]
  22. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, "Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy," J. Biomed. Opt. 10, 44002 (2005). [CrossRef] [PubMed]
  23. A. Maki, Y. Yamashita, E. Watanabe, and H. Koizumi, "Visualizing human motor activity by using non-invasive optical topography," Front. Med. Biol. Eng. 7, 285-297 (1996). [PubMed]
  24. T. S. Leung, C. E. Elwell, J. R. Henty, and D. T. Delpy, "Simultaneous measurement of cerebral tissue oxygenation over the adult frontal and motor cortex during rest and functional activation," Adv. Exp. Med. Biol. 510, 385-389 (2003). [CrossRef] [PubMed]
  25. W. N. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp. Brain. Res. 129, 457-461 (1999). [CrossRef] [PubMed]
  26. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl, and A. Villringer, "Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults," Neuroimage 12, 623-639 (2000). [CrossRef] [PubMed]
  27. P. Wobst, R. Wenzel, M. Kohl, H. Obrig, and A. Villringer, "Linear aspects of changes in deoxygenated hemoglobin concentration and cytochrome oxidase oxidation during brain activation," Neuroimage 13, 520-530 (2001). [CrossRef] [PubMed]
  28. M. Wolf, P. Evans, H. U. Bucher, V. Dietz, M. Keel, R. Strebel, and K. von Siebenthal, "Measurement of absolute cerebral haemoglobin concentration in adults and neonates," Adv. Exp. Med. Biol. 428, 219-227 (1997). [CrossRef] [PubMed]
  29. R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, "Saccadic suppression induces focal hypooxygenation in the occipital cortex," J. Cereb. Blood Flow Metab. 20, 1103-1110 (2000). [CrossRef]
  30. C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, "A dynamic phantom brain model for near-infrared spectroscopy," Phys. Med. Biol. 40, 2079-2092 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited