OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6157–6171

Quantitative molecular sensing in biological tissues: an approach to non-invasive optical characterization

Malavika Chandra, Karthik Vishwanath, Greg D. Fichter, Elly Liao, Scott J. Hollister, and Mary-Ann Mycek  »View Author Affiliations

Optics Express, Vol. 14, Issue 13, pp. 6157-6171 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to non-invasively and quantitatively characterize thick biological tissues by combining both experimental and computational approaches in tissue optical spectroscopy was developed and validated on fifteen porcine articular cartilage (AC) tissue samples. To the best of our knowledge, this study is the first to couple non-invasive reflectance and fluorescence spectroscopic measurements on freshly harvested tissues with Monte Carlo computational modeling of time-resolved propagation of both excitation light and multi-fluorophore emission. For reflectance, quantitative agreement between simulation and experiment was achieved to better than 11%. Fluorescence data and simulations were used to extract the ratio of the absorption coefficients of constituent fluorophores for each measured AC tissue sample. This ratio could be used to monitor relative changes in concentration of the constituent fluorophores over time. The samples studied possessed the complexity and variability not found in artificial tissue-simulating phantoms and serve as a model for future optical molecular sensing studies on tissue engineered constructs intended for use in human therapeutics. An optical technique that could non-invasively and quantitatively assess soft tissue composition or physiologic status would represent a significant advance in tissue engineering. Moreover, the general approach described here for optical characterization should be broadly applicable to quantitative, non-invasive molecular sensing applications in complex, three-dimensional biological tissues.

© 2006 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 10, 2006
Revised Manuscript: May 24, 2006
Manuscript Accepted: June 4, 2006
Published: June 26, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Malavika Chandra, Karthik Vishwanath, Greg D. Fichter, Elly Liao, Scott J. Hollister, and Mary-Ann Mycek, "Quantitative molecular sensing in biological tissues: an approach to non-invasive optical characterization," Opt. Express 14, 6157-6171 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Wilson, and S. Jacques, "Optical reflectance and transmittance of tissues: principles and applications," IEEE J. Quantum Electron. 26, 2186-2199 (1990). [CrossRef]
  2. I. Bigio, and J. Mourant, "Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy," Phys. Med. Biol. 42, 803-814 (1997). [CrossRef] [PubMed]
  3. S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, "In vivo fluorescence imaging for tissue diagnostics," Phys. Med. Biol. 42, 815-824 (1997). [CrossRef] [PubMed]
  4. R. Richards-Kortum, and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996). [CrossRef] [PubMed]
  5. M.-A. Mycek, and B. W. Pogue, eds., Handbook of Biomedical Fluorescence (Marcel Dekker, Inc., New York, 2003).
  6. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. R. R. Dasari, I. I. Itzkan, J. J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000). [CrossRef] [PubMed]
  7. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, and T. F. Deutsch, "Ultraviolet laser-induced fluorescence of colonic polyps," Gastroenterology 102, 1155-1160 (1992). [PubMed]
  8. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, and R. Richards-Kortum, "In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence," inProceedings of the National Academy of Science, USA, 91, 10193-10197 (1994).
  9. M.-A. Mycek, K. Schomacker, and N. Nishioka, "Colonic polyp differentiation using time resolved autofluorescence spectroscopy," Gastrointest. Endosc. 48, 390-394 (1998). [CrossRef] [PubMed]
  10. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  11. S. Chandrasekhar, Radiative Transfer (Dover, N.Y., 1960).
  12. J. Wu, M. Feld, and R. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media," Appl. Opt. 32, 3585-3595 (1993). [CrossRef] [PubMed]
  13. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  14. W. M. Star, J. P. A. Marijnissen, and M. J. C. van-Gemert, "Light Dosimetry in optical phantoms in tissues: I. Multiple flux and transport theory," Phys. Med. Biol 33, 437-454 (1988). [CrossRef] [PubMed]
  15. A. J. Welch, and M. J. C. van-Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum Press, New York, 1995), Chap. 4, 9.
  16. G. Zonios, R. Cothren, J. Arendt, J. Wu, J. Van Dam, J. Crawford, R. Manoharan, and M. Feld, "Morphological model of human colon tissue fluorescence," IEEE Trans. Biomed. Eng. 43, 113-122 (1996). [CrossRef] [PubMed]
  17. H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Reconstruction of in vivo skin auto fluorescence spectrum from microscopic properties by Monte-Carlo simulation," J. Photochem. Photobiol. B 38, 234-240 (1997). [CrossRef] [PubMed]
  18. B. Pogue, and T. Hasan, "Fluorophore quantitation in tissue simulating media with confocal detection," IEEE J. Sel. Top. Quantum Electron. 2, 959-964 (1996). [CrossRef]
  19. K. Vishwanath, and M.-A. Mycek, "Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?," Opt. Lett. 29, 1512-1514 (2004). [CrossRef] [PubMed]
  20. K. Vishwanath, and M.-A. Mycek, "Time-resolved photon migration in bi-layered tissue models," Opt. Express 13, 7466-7482 (2005). [CrossRef] [PubMed]
  21. J. A. Buckwalter, and H. J. Mankin, "Instructional course lectures, The American Academy of Orthopaedic Surgeons-Articular Cartilage. Part I: Tissue Design and Chondrocyte-Matrix Interactions," J. Bone and Jt. Surg. (American) 79, 600-611 (1997).
  22. J. D. Pitts and M.-A. Mycek, "Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution.," Rev. Sci. Instrum. 72, 3061-3072 (2001). [CrossRef]
  23. D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, "Analysis of skin tissues spatial fluorescence distrubution by the Monte Carlo simulation," J. Physics D: Appl. Phys. 36, 1722-1728 (2003). [CrossRef]
  24. L. Lindqvist, B. Czochralska, and I. Grigorov, "Determination of the mechanism of photo-ionization of NADH in aqueous solution on laser excitation at 355 nm," Chem. Phys. Lett. 119, 494-497 (1985). [CrossRef]
  25. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993). [CrossRef] [PubMed]
  26. S. A. Prahl, "Inverse Adding-Doubling," http://omlc.ogi.edu/staff/prahl.html.
  27. K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002). [CrossRef] [PubMed]
  28. L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Computer Methods and Programs in Biomedicine 47, 131-146 (1995). [CrossRef] [PubMed]
  29. S. L. Jacques, "Time resolved propagation of ultrashort laser pulses within turbid tissue," Appl. Opt. 28, 2223-2229 (1989). [CrossRef] [PubMed]
  30. K. Vishwanath, "Computational modeling of time-resolved fluorescence transport in turbid media for non-invasive clinical diagnostics",Ph.D. Thesis in Applied Physics Program, (University of Michigan, Ann Arbor), Chapter 3, Section 3.1, p 67,(2005).
  31. J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, and M. J. C. van Gemert, "In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm," Phys. Med. Biol. 42, 2255-2261 (1997). [CrossRef] [PubMed]
  32. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, "Understanding contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications," J. Biomed. Opt. 6, 385-396 (2001). [CrossRef] [PubMed]
  33. P. Å. Öberg, T. Sundqvist, and A. Johansson, "Asessment of cartilage thickness utilising reflectance spectroscopy," Med. Biol. Eng. Comput. 42, 3-8 (2004). [CrossRef] [PubMed]
  34. L. Marcu, D. Cohen, J.-M. I. Maarek, and W. S. Grundfest, "Characterization of Type I, II, III, IV and V collagens by time-resolved laser-induced fluorescence spectroscopy," in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE 3917, 93-101 (2000).
  35. C. B. Talbot, R. K. P. Benninger, P. de Beule, J. Requejo-Isidro, D. S. Elson, C. Dunsby, I. Munro, M. A. Neil, A. Sandison, N. Sofat, H. Nagase, P. M. W. French, and M. J. Lever, "Application of hyperspectral fluorescence lifetime imaging to tissue autofluorescence: arthritis," in Diagnostic Optical Spectroscopy in Biomedicine III, M.-A. Mycek, ed., Proc. SPIE-OSA Biomedical Optics 5862, 58620T (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited