OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6201–6206

Precise control of superluminal and slow light propagation by transverse phase modulation

I. Guedes, L. Misoguti, and S. C. Zilio  »View Author Affiliations

Optics Express, Vol. 14, Issue 13, pp. 6201-6206 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have used a heterodyne Z-scan technique to produce both superluminal and slow light propagation in media that present either thermal or Kerr nonlinearities. The sample position determines the magnitude and sign of the group velocity and this property was used to control it, with an experimental setup much simpler than those previously reported in similar investigations. The observed effect is attributed to the transverse phase modulation produced by a focused Gaussian beam, and is capable of producing both positive and negative group velocities in the range 1.5 m/s <|υg|<c.

© 2006 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Nonlinear Optics

Original Manuscript: April 3, 2006
Revised Manuscript: June 3, 2006
Manuscript Accepted: June 9, 2006
Published: June 26, 2006

I. Guedes, L. Misoguti, and S. C. Zilio, "Precise control of superluminal and slow light propagation by transverse phase modulation," Opt. Express 14, 6201-6206 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and D. J. Gauthier, "Slow and Fast Light," Prog. Opt. 43, 496, edited by E. Wolf (Elsevier, Amsterdam, 2002).
  2. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris "Electromagnetically induced transparency - propagation dynamics," Phys. Rev. Lett. 74, 2447 (1995). [CrossRef] [PubMed]
  3. L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999). [CrossRef]
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999). [CrossRef]
  5. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, "Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation," Phys. Rev. Lett. 83, 1767 (1999). [CrossRef]
  6. S. E. Harris, J. E. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29 (1992). [CrossRef] [PubMed]
  7. S. P. Tewari and G. S. Agarwal, "Control of phase matching and nonlinear generation in dense media by resonant fields," Phys. Rev. Lett. 56, 1811 (1986). [CrossRef] [PubMed]
  8. R. S. Benninkal., "Enhanced self-action effects by electromagnetically induced transparency in the two-level atom," Phys. Rev. A 63, 033804 (2001). [CrossRef]
  9. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature (London) 406, 277 (2000). [CrossRef]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  11. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200 (2003). [CrossRef] [PubMed]
  12. Q. Yang, J. T. Seo, B. Tabibi, and H. Wang, "Slow light and superluminality in Kerr media without a pump," Phys. Rev. Lett. 95, 063902 (2005). [CrossRef] [PubMed]
  13. P. Yeh, "2-wave mixing in nonlinear media," IEEE J. Quantum Electron. QE-25, 484 (1989). [CrossRef]
  14. M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. QE-26, 760 (1990). [CrossRef]
  15. J. Penaforte, E. Gouveia, and S. C. Zilio, "Nondegenerate 2-wave mixing in GdAlO3-Cr3+," Opt. Lett. 16, 452 (1991). [CrossRef] [PubMed]
  16. S. C. Zilio, J. C. Penaforte, E. A. Gouveia, and M. J. V. Bell, "Nearly degenerate 2-wave mixing in saturable absorbers," Opt. Commun. 86, 81 (1991). [CrossRef]
  17. A. Yariv, Quantum Electronics, 3rd edition (John Wiiley and Sons, New York, 1989).
  18. L. C. Oliveira, T. Catunda, and S. C. Zilio, "Saturation effects in Z-scan measurements," Jpn. J. Appl. Phys. 35, 2649 (1996). [CrossRef]
  19. J. G. Tian, C. Zhang, G. Zhang, and J. Li, "Position dispersion and optical limiting resulting from thermally-induced nonlinearities in chinese tea liquid,"Appl. Opt. 32, 6628 (1993). [CrossRef] [PubMed]
  20. Handbook of Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited