OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6213–6225

Chromatic aberration correction of the human eye for retinal imaging in the near infrared

Enrique J. Fernández, Angelika Unterhuber, Boris Považay, Boris Hermann, Pablo Artal, and Wolfgang Drexler  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 6213-6225 (2006)
http://dx.doi.org/10.1364/OE.14.006213


View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An achromatizing lens has been designed for the human eye in the near infrared range, from 700 to 900 nm, for retinal imaging purposes. Analysis of the performance of the lens, including tolerance to misalignments, has been mathematically accomplished by using an existing eye model. The calculations have shown a virtually perfect correction of the ocular longitudinal chromatic aberration, while still keeping a high optical quality. Ocular aberrations in five subjects have been measured with and without the achromatizing lens by using a Hartmann-Shack wavefront sensor and a broad bandwidth femtosecond Ti:sapphire laser in the spectral range of interest with a set of interference filters, studying the benefits and limits in the use of the achromatizing lens. Ocular longitudinal chromatic aberration has been experimentally demonstrated to be fully corrected by the proposed lens, with no induction of any other parasitic aberration. The practical implementation of the achromatizing lens for Ophthalmoscopy, specifically for optical coherence tomography where the use of polychromatic light sources in the near infrared portion of the spectrum is mandatory, has been considered. The potential benefits of using this lens in combination with adaptive optics to achieve a full aberration correction of the human eye for retinal imaging have also been discussed.

© 2006 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(220.1000) Optical design and fabrication : Aberration compensation
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: March 30, 2006
Revised Manuscript: June 14, 2006
Manuscript Accepted: June 19, 2006
Published: June 26, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Enrique J. Fernández, Angelika Unterhuber, Boris Považay, Boris Hermann, Pablo Artal, and Woflgang Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-6213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Sivak and T. Mandelman, "Chromatic dispersion of the ocular media," Vision Res. 16, 997-1003 (1982). [CrossRef]
  2. P. A. Howarth, "The lateral chromatic aberration of the eye," Ophthalmic. Physiol. Opt. 4, 223-226 (1984). [CrossRef]
  3. L. N. Thibos, "Calculation of the influence of lateral chromatic aberration on image quality across the visual field," J. Opt. Soc. Am. A 4, 1673-1680 (1987). [CrossRef] [PubMed]
  4. Y. U. Ogboso and H. E. Bedell, "Magnitude of lateral chromatic aberration across the retina of the human eye," J. Opt. Soc. Am. A 4, 1666-1672 (1987). [CrossRef] [PubMed]
  5. I. Newton, Opticks (1730), fourth edition, Book I, Part 2, Prop. VIII. (Reprinted by Bell, London, 1931).
  6. T. Young, "An account of some cases of the production of colors, not hitherto described," Philos. Trans. Roy. Soc. London 92, 387-397 (1802). [CrossRef]
  7. J. Fraunhofer, "Bestimmung des Brechungs- und des Farbenzerstreuungs-Vermbgens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre," Ann. Phys. (Gilbert) 56, 264-313 (1817). [CrossRef]
  8. A. Matthiessen, "Determination exacte de la dispersion de l'oeil humain, par des mesures directes," Comptes rendus Acad. Sci., Paris 24, 875 (1847).
  9. H. von Helmholtz, Treatise on Physiological Optics (1866); translation from third German edition (1909) ed. by Southall, Opt. Soc. Am. Vol. I (1924).
  10. G. Wald and D. T. Griffin, "The change in refractive power of the human eye in dim and bright light," J. Opt. Soc. Am. 37, 321-329 (1947). [CrossRef] [PubMed]
  11. A. Ivanoff, Les aberrations de l’Oeil, (Mason, Paris, 1953).
  12. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 47, 564-565 (1957). [CrossRef] [PubMed]
  13. M. Millodot and J. G. Sivak, "Influence of accommodation on the chromatic aberration of the eye," Br. J. Physiol. Opt. 28, 169-174 (1973). [PubMed]
  14. W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration the human eye," Vision Res. 16, 99-105 (1976). [CrossRef]
  15. P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the eye and its correction," Vision Res. 26, 361-366 (1986). [CrossRef] [PubMed]
  16. D. P. Cooper and P. L. Pease, "Longitudinal chromatic aberration of the human eye and wavelength in focus," Am. J. Optom. Physiol. Opt. 65, 99-107 (1988). [PubMed]
  17. L. N. Thibos, A. Bradley, and X. Zhang, "The effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991). [CrossRef]
  18. C. Ware, "Human axial chromatic aberration found not to decline with age," A. Graefes Arch. Klin. Exper. Ophthalmol. 218, 39-41 (1982). [CrossRef]
  19. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988). [CrossRef] [PubMed]
  20. M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 37, 513-521 (1997).
  21. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  22. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  23. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, "Ocular wave-front statistics in a normal young population," Vision Res. 42, 1611-1617 (2002). [CrossRef] [PubMed]
  24. P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]
  25. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005). [CrossRef] [PubMed]
  26. D. A. Atchinson and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-36 (2005). [CrossRef]
  27. A. C. van Heel, "Correcting the spherical and chromatic aberrations of the eye," J. Opt. Soc. Am. 36, 237- 239 (1947).
  28. A. Ames and C. A. Proctor, "Dioptrics of the eye," J. Opt. Soc. Am. 5, 22-84 (1921).
  29. A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982). [PubMed]
  30. I. Powell, "Lenses for correcting chromatic aberration of the eye," App. Opt. 20, 4152-4155 (1981). [CrossRef]
  31. F. C. Delory and K. P. Plibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1067 (1989). [CrossRef]
  32. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  33. T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003). [CrossRef]
  34. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001). [CrossRef] [PubMed]
  35. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005). [CrossRef] [PubMed]
  36. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005). [CrossRef] [PubMed]
  37. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  38. E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005). [CrossRef] [PubMed]
  39. E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005). [CrossRef] [PubMed]
  40. A. Gullstrand, Appendix II in Handbuch der Physiologischen Optik, H. von Helmholtz, ed., 3rd ed. (Voss, Hamburg, 1909).
  41. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, Berlin, 1980).
  42. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "Spherical aberration of the reduced schematic eye with elliptical refracting surface," Optom. Vision Sci. 74, 548-556 (1997). [CrossRef]
  43. O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984). [PubMed]
  44. H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef]
  45. D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," Vision Res. 35, 2529-2538 (1995). [CrossRef] [PubMed]
  46. R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  47. W. Lotmar, "Theoretical eye model with aspherics," J. Opt. Soc. Am. 61, 1522-1529 (1971). [CrossRef]
  48. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of wide-angle schematic eye model," J. Opt. Soc Am. A 16, 1881-1891 (1999). [CrossRef]
  49. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Near infrared ocular wavefront sensing with a femtosecond laser," ARVO abstract 2836 (2004).
  50. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  51. American National Standard Institute, American National Standard for Safe Use of Lasers, ANSI Z 136-1 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited