OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6226–6242

Chromatic compensation of programmable Fresnel lenses

María S. Millán, Joaquín Otón, and Elisabet Pérez-Cabré  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 6226-6242 (2006)
http://dx.doi.org/10.1364/OE.14.006226


View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two proposals to compensate chromatic aberration of a programmable phase Fresnel lens displayed on a liquid crystal device and working under polychromatic illumination are presented. They are based on multiplexing a set of lenses, designed with a common focal length for different wavelengths, and a multicolor filter that makes each sublens work almost monochromatically. One proposal uses spatial multiplexing with mosaic aperture. The other uses a rotating scheme, a color filter against an array of lens sectors, and hybrid spatial-time integration. The central order focalization has a unique location at the focal plane. We have drastically reduced the transversal chromatic aberration of the polychromatic point spread function by properly adjusting the pupil size of each sublens. Depth of focus curves have been made coincident too for the selected wavelengths.

© 2006 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(220.1000) Optical design and fabrication : Aberration compensation
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: March 21, 2006
Revised Manuscript: June 16, 2006
Manuscript Accepted: June 18, 2006
Published: June 26, 2006

Citation
María S. Millán, Joaquín Otón, and Elisabet Pérez-Cabré, "Chromatic compensation of programmable Fresnel lenses," Opt. Express 14, 6226-6242 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-6226


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Miyamoto, "The phase Fresnel lens," J. Opt. Soc. Am. 51, 17-20 (1961). [CrossRef]
  2. J. A. Jordan, P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy, "Kinoform lenses," Appl. Opt. 9, 1883-1887 (1970). [PubMed]
  3. D. Faklis, G. M. Morris, "Broadband imaging with holographic lenses," Opt. Eng. 28, 592-598 (1989).
  4. R. A. Hyde, "Eyeglass. 1. Very large aperture diffractive telescopes," Appl. Opt. 38, 4198-4212 (1999). [CrossRef]
  5. P. Andrés, V. Climent, J. Lancis, G. Mínguez-Vega, E. Tajahuerce, and A. W. Lohmann, "All-incoherent dispersion- compensated optical correlator," Opt. Lett. 24, 1331-1333 (1999). [CrossRef]
  6. E. C. Tam, S. Zhou, and M. R. Feldman, "Spatial-light-modulator-based electro-optical imaging system," Appl. Opt. 31, 578-580 (1992). [CrossRef] [PubMed]
  7. J. A. Davis, D. M. Cottrell, R. A. Lilly, and S. W. Connely, "Multiplexed phase-encoded lenses written on spatial light modulators," Opt. Lett. 14, 420-422 (1989). [CrossRef] [PubMed]
  8. J. A. Davis, D. M. Cottrell, J. E. Davis, and R. A. Lilly, "Fresnel lens-encoded binary phase-only filters for optical pattern recognition," Opt. Lett. 14, 659-661 (1989). [CrossRef] [PubMed]
  9. D. M. Cottrell, J. A. Davis, T. R. Hedman, and R. A. Lilly, "Multiple imaging phase-encoded optical elements, written as programmable spatial light modulators," Appl. Opt. 29, 2505-2509 (1990). [CrossRef] [PubMed]
  10. E. Carcolé, M. S. Millán, and J. Campos, "Derivation of weighting coefficients for multiplexed phase-diffractive elements," Opt. Lett. 20, 2360-2362 (1995). [CrossRef] [PubMed]
  11. M. Hain, W. von Spiegel, M. Schmiedchen, T. Tschudi, and B. Javidi, "3D integral imaging using diffractive Fresnel lens arrays," Opt. Express 13, 315-326 (2005). [CrossRef] [PubMed]
  12. E. Carcolé, J. Campos, and S. Bosch, "Diffraction theory of Fresnel lenses encoded in low-resolution devices," Appl. Opt. 33, 162-174 (1994). [CrossRef] [PubMed]
  13. V. Laude, "Twisted-nematic liquid-crystal pixilated active lens," Opt. Commun. 153, 134-152 (1998). [CrossRef]
  14. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, "Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display," Appl. Opt. 43, 6278-6284 (2004). [CrossRef] [PubMed]
  15. V. Arrizón, E. Carreón, and L. A. González, "Self-apodization of low-resolution pixelated lenses," Appl. Opt. 38, 5073-5077 (1999). [CrossRef]
  16. A. Márquez, C. Iemmi, J. C. Escalera, J. Campos, S. Ledesma, J. A. Davis, and M. J. Yzuel, "Amplitude apodizers encoded onto Fresnel lenses implemented on a phase-only spatial light modulator," Appl. Opt. 40, 2316-2322 (2001). [CrossRef]
  17. A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, "Achromatic diffractive lens griten onto a liquid cristal display," Opt. Lett. 31, 392-394 (2006). [CrossRef] [PubMed]
  18. J. Bescós, J. H. Altamirano, J. Santamaria, and A. Plaza, "Apodizing filters in colour imaging," J. Opt. (Paris) 17, 91-96 (1986). [CrossRef]
  19. J. W. Goodmann, Introduction to Fourier Optics, 2nd edition (McGraw-Hill, New York, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: GIF (604 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited