OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6285–6290

Study of surface plasmon chirality induced by Archimedes’ spiral grooves

Tomoki Ohno and Shintaro Miyanishi  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 6285-6290 (2006)
http://dx.doi.org/10.1364/OE.14.006285


View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A chirality of surface plasmons excited on a silver film with Archimedes’ spiral grooves during incidence of a circularly polarized light is analytically and numerically studied by using the finite-difference time-domain (FDTD) modeling method. We found that the surface of a plasmon has selective chirality, which is given by the sum of the chiralities of the incident light and the spiral structure. The surface plasmons with the chirality lead to zero-order, first-order, and high-order evanescent Bessel beams with electric charge distributions on the film. This selectivity could be widely applied for chiral detection of the incident light and chiral excitation of several optical modes in nanophotonics.

© 2006 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.1960) Physical optics : Diffraction theory

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 17, 2006
Revised Manuscript: May 17, 2006
Manuscript Accepted: May 17, 2006
Published: June 26, 2006

Citation
Tomoki Ohno and Shintaro Miyanishi, "Study of surface plasmon chirality induced by Archimedes’ spiral grooves," Opt. Express 14, 6285-6290 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-6285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, "Topological charge and angular momentum of light beams carrying optical vortices," Phys. Rev. A 56, 4064-4075 (1997).
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transfer of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
  3. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and extrinsic nature of the orbital angular momentum of a light beam," Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  4. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]
  5. C. J. R. Sheppard, "High-aperture beams," J. Opt. Soc. Am. A 18, 1579-1587 (2001). [CrossRef]
  6. S. Ruschin and A. Leizer, "Evanescent Bessel beams," J. Opt. Soc. Am. A 15, 1139-1143 (1998). [CrossRef]
  7. H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am. B 15, 1381-1386 (1998).
  8. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90, 107404 (2003). [CrossRef] [PubMed]
  9. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95,227401 (2005). [CrossRef] [PubMed]
  10. A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and ‘focusing’ of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005). [CrossRef]
  11. A. V. Krasavin, A. S. Schwanecke, and N. I. Zheludev, "Extraordinary properties of light transmission through a small chiral hole in a metallic screen," J. Opt. A, Pure Appl. Opt.  8, S98-S105 (2006).
  12. W. L. Barnes, A Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  13. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  14. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  15. A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005). [CrossRef] [PubMed]
  16. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  17. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A.G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited