OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6297–6302

Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography

Jun Hyuk Moon, Shu Yang, Wenting Dong, Joseph W. Perry, Ali Adibi, and Seung-Man Yang  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 6297-6302 (2006)
http://dx.doi.org/10.1364/OE.14.006297


View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have fabricated diamond-like silicon photonic crystals through a sequential silica/silicon chemical vapor deposition (CVD) process from the corresponding polymer templates photopatterned by holographic lithography. Core-shell morphology is revealed due to the partial backfilling of the interstitial pores. To model the shell formation and investigate its effect to the bandgap properties, we developed a two-parameter level-set approach that closely approximated the core-shell morphology, and compare the bandgap simulation with the measured optical properties of the 3D crystals at each processing step. Both experimental and calculation results suggest that a complete filling is necessary to maximize the photonic bandgap in the diamond-like structures.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:
Photonic Crystals

History
Original Manuscript: May 18, 2006
Revised Manuscript: June 15, 2006
Manuscript Accepted: June 15, 2006
Published: June 26, 2006

Citation
Jun Hyuk Moon, Shu Yang, Wenting Dong, Joseph W. Perry, Ali Adibi, and Seung-Man Yang, "Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography," Opt. Express 14, 6297-6302 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-6297


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Y. A. Vlasov, "Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic band gap effects," Nuovo Cimento Soc. Ital. Fis. D-Condens.Matter At. Mol. Chem. Phys. Fluids Plasmas Biophys. 17, 1349-1354 (1995).
  2. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  3. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  4. G. M. Gratson, M. J. Xu, and J. A. Lewis, "Microporiodis structures - Direct writing of three-dimensional webs," Nature 428, 386 (2004). [CrossRef] [PubMed]
  5. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000). [CrossRef] [PubMed]
  6. S. Shoji, and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000). [CrossRef]
  7. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  8. J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymer photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17, 83-93 (2006). [CrossRef]
  9. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003). [CrossRef]
  10. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002). [CrossRef]
  11. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, "Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal," Opt. Express 10, 1074-1082 (2002). [PubMed]
  12. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, "Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004). [CrossRef]
  13. S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005). [CrossRef]
  14. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003). [CrossRef]
  15. M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, "Photonic properties of bicontinuous cubic microphases," Phys. Rev. B 65, 165123 (2002).
  16. C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, "Triply periodic bicontinuous structures through interference lithography: a level-set approach," J. Opt. Soc. Am. A 20, 948-954 (2003). [CrossRef]
  17. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001). [CrossRef] [PubMed]
  18. H. Miguez, N. Tetreault, S. M. Yang, V. Kitaev, and G. A. Ozin, "A new synthetic approach to silicon colloidal photonic crystals with a novel topology and an omni-directional photonic bandgap: Micromolding in inverse silica opal (MISO)," Adv. Mater. 15, 597-600 (2003). [CrossRef]
  19. N. Tétreault, H. Miguez, and G. A. Ozin, "Silicon inverse opal - A platform for photonic bandgap research," Adv. Mater. 16, 1471-1476 (2004). [CrossRef]
  20. A. Blanco, and C. López, "Silicon onion-layer nanostructures arranged in three dimensions," Adv. Mater., In press (2006). [CrossRef]
  21. H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun., 2736-2737 (2002). [CrossRef]
  22. G. M. Gratson, F. Garcia-Santamaria, V. Lousse, M. J. Xu, S. H. Fan, J. A. Lewis, and P. V. Braun, "Direct-write assembly of three-dimensional photonic crystals: Conversion of polymer scaffolds to silicon hollow-woodpile structures," Adv. Mater. 18, 461-465 (2006). [CrossRef]
  23. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006). [CrossRef]
  24. K. Busch, and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
  25. J. H. Moon, S.-M. Yang, and S. Yang, "Photonic bandgap structures of core-shell simple cubic crystals from Holographic Lithography," Appl. Phys. Lett. 88, 121101 (2006). [CrossRef]
  26. H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67 (2003).
  27. The calculated bandgap width is smaller than literature value, which may be attributed to the discrepancy in refractive index of silicon used in calculation and calculation resolution.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited