OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6303–6307

Design of compound-defect waveguides in three-dimensional photonic crystals

Shoichi Kawashima, Makoto Okano, Masahiro Imada, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 6303-6307 (2006)
http://dx.doi.org/10.1364/OE.14.006303


View Full Text Article

Enhanced HTML    Acrobat PDF (119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We designed three-dimensional (3D) photonic crystal (PC) waveguides by simultaneously introducing one acceptor-type and two donor-type line defects. The waveguides have an extremely large single-mode bandwidth, which covers more than 90% of the complete photonic band gap. The relatively large group velocity and the mode-field localization in the air core should prevent unintended nonlinear phenomena for ultra-short pulse propagation. These promising characteristics could only be achieved by using 3D PCs, which have the advantages of complete light confinement and no restrictions of the light cone.

© 2006 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Photonic Crystals

History
Original Manuscript: April 27, 2006
Revised Manuscript: June 6, 2006
Manuscript Accepted: June 6, 2006
Published: June 26, 2006

Citation
Shoichi Kawashima, Makoto Okano, Masahiro Imada, and Susumu Noda, "Design of compound-defect waveguides in three-dimensional photonic crystals," Opt. Express 14, 6303-6307 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-6303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  3. A. Chutinan and S. Noda, "Waveguides and Waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000). [CrossRef]
  4. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  5. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  6. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, "Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004). [CrossRef] [PubMed]
  7. A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999). [CrossRef]
  8. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001). [CrossRef]
  9. M. Okano, S. Kako, and S. Noda, "Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal," Phys. Rev. B 68, 235110 (2003). [CrossRef]
  10. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 023902 (2003). [CrossRef] [PubMed]
  11. D. Roundy and J. Joannopoulos, "Photonic crystal structure with square symmetry within each layer and a three-dimensional band gap," Appl. Phys. Lett. 82, 3835-3837 (2003). [CrossRef]
  12. S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, "Design of donor-type line-defect waveguides in three-dimensional photonic crystals," Optics Express 13, 9774-9781 (2005). [CrossRef] [PubMed]
  13. M. Bayindir and E. Ozbay, "Dropping of electromagnetic waves through localized modes in three-dimensional photonic band gap structures," Appl. Phys. Lett. 81, 4514-4516 (2002). [CrossRef]
  14. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, "Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths," Appl. Phys. Lett. 88, 171107 (2006). [CrossRef]
  15. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  16. E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, "Micromachined millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 64, 2059-2061 (1994). [CrossRef]
  17. H. S. Sözüer and J. P. Dowling, "Photonic band calculations for woodpile structures," J. Mod. Opt. 41, 231-239 (1994). [CrossRef]
  18. K. M. Leung and Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Phys. Rev. Lett. 65, 2646-2649 (1990). [CrossRef] [PubMed]
  19. Z. Zhang and S. Satpathy, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations," Phys. Rev. Lett. 65, 2650-2653 (1990). [CrossRef] [PubMed]
  20. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Photonic band gaps and localization," in Proceedings of the NATO Advanced Science Institutes Series, C. M. Soukoulis, ed. (Plenum, New York, 1993), p. 235.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited