OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6308–6315

Room temperature continuous-wave lasing in photonic crystal nanocavity

Masahiro Nomura, Satoshi Iwamoto, Katsuyuki Watanabe, Naoto Kumagai, Yoshiaki Nakata, Satomi Ishida, and Yasuhiko Arakawa  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 6308-6315 (2006)
http://dx.doi.org/10.1364/OE.14.006308


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate room temperature continuous-wave laser operation at 1.3 µm in a photonic crystal nanocavity with InAs/GaAs self-assembled quantum dots by optical pumping. By analyzing a coupled rate equation and the experimental light-light characteristic plot, we evaluate the spontaneous emission coupling factor of the laser to be ~0.22. Three-dimensional carrier confinement and a low transparent carrier density due to volume effect in a quantum dot system play important roles in the cw laser operation at room temperature as well as a high quality factor photonic crystal nanocavity.

© 2006 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Photonic Crystals

History
Original Manuscript: May 2, 2006
Revised Manuscript: June 5, 2006
Manuscript Accepted: June 7, 2006
Published: June 26, 2006

Citation
Masahiro Nomura, Satoshi Iwamoto, Katsuyuki Watanabe, Naoto Kumagai, Yoshiaki Nakata, Satomi Ishida, and Yasuhiko Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-6308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. H. Altug and J. Vuèkoviæ, "Photonic crystal nanocavity array laser," Opt. Express 13,8819-8828 (2005). [CrossRef] [PubMed]
  3. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401-1-117401-4 (2006). [CrossRef]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004). [CrossRef] [PubMed]
  5. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407,608-610 (2000). [CrossRef] [PubMed]
  6. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999). [CrossRef] [PubMed]
  7. T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002). [CrossRef]
  8. S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-127404-4 (2006). [CrossRef]
  9. K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999). [CrossRef]
  10. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003). [CrossRef] [PubMed]
  11. G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992). [CrossRef]
  12. G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 35,2386-2396 (1991). [CrossRef]
  13. R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993). [CrossRef]
  14. L.Z. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82,319-321 (2003). [CrossRef]
  15. H.Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004). [CrossRef]
  16. A. Sakamoto and M. Sugawara, "Theoretical calculation of lasing spectra of quantum-dot lasers: Effect on homogeneous broadening of optical gain," IEEE Photon. Technol. Lett. 12, 107-109 (2000). [CrossRef]
  17. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308-1-041308-4 (2002).
  18. H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001). [CrossRef]
  19. D. D. Nolte, "Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs," Sol.-Stat. Electron. 33, 295-298 (1990). [CrossRef]
  20. K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005). [CrossRef]
  21. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000). [CrossRef]
  22. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001). [CrossRef]
  23. M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida, and Y. Arakawa, "Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity," Appl. Phys. Lett. 88, 141108-1-141108-3 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited