OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 13 — Jun. 26, 2006
  • pp: 6353–6358

Optical trapping near a photonic crystal

Adel Rahmani and Patrick C. Chaumet  »View Author Affiliations


Optics Express, Vol. 14, Issue 13, pp. 6353-6358 (2006)
http://dx.doi.org/10.1364/OE.14.006353


View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the photonic confinement induced by a photonic crystal can be exploited to trap nanoparticles. As demonstrated by the recent advances in the design and fabrication of photonic crystals slab structures, total internal reflection and multiple scattering can be combined to confine photons very efficiently. A consequence of this confinement is the existence of strong gradients of electromagnetic intensity in the near-field of the photonic structure. Hence, a nanoparticle placed in the vicinity of the crystal would experience an optical force which, with a proper design of the near-field optical landscape, can lead to trapping.

© 2006 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(140.3410) Lasers and laser optics : Laser resonators
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Trapping

History
Original Manuscript: April 28, 2006
Revised Manuscript: June 14, 2006
Manuscript Accepted: June 14, 2006
Published: June 26, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Adel Rahmani and Patrick C. Chaumet, "Optical trapping near a photonic crystal," Opt. Express 14, 6353-6358 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-13-6353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, (Princeton, Princeton University Press, 1995).
  3. K. Sakoda, Optical properties of photonic crystals, 2nd edition (Berlin, Springer-Verlag, 2004).
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  5. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu˘ckovi´c, "Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal," Phys. Rev. Lett. 95, 013904-4 (2005). [CrossRef] [PubMed]
  6. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-4 (2006). [CrossRef] [PubMed]
  7. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401-4 (2006). [CrossRef] [PubMed]
  8. O. Toader, S. John, and K. Busch, "Optical trapping, Field enhancement and Laser cooling in photonic crystals," Opt. Express 8, 217-222 (2001). [CrossRef] [PubMed]
  9. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. USA 94, 4853 (1997). [CrossRef] [PubMed]
  10. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  11. K. C. Neuman, and S. M. Block, "Optical trapping," Rev. Sci. Instr. 75, 2787-2809 (2004). [CrossRef]
  12. K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nanotoday 1, 18 (2006). [CrossRef]
  13. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  14. T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (_ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  15. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  16. E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973). [CrossRef]
  17. B. T. Draine, "The discrete dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  18. F. Bordas, N. Louvion. S. Callard, P. C. Chaumet, and A. Rahmani, "Coupled dipole method for radiation dynamics in finite photonic crystal structures," Phys. Rev. E (in press).
  19. A. Rahmani and G. W. Bryant, "Spontaneous emission in microcavity electrodynamics," Phys. Rev. A 65, 033817-12 (2002). [CrossRef]
  20. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Phil. Trans. Roy. Soc. Lond. A 362, 719-737 (2004).
  21. P. C. Chaumet and M. Nieto-Vesperinas, "Time-averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2000). [CrossRef]
  22. L. Novotny, R. X. Bian, and X. Sunney Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  23. H. Altug and J. Vuckovíc, "Photonic crystal nanocavity array laser," Opt. Express 13, 8819-8828 (2005). [CrossRef] [PubMed]
  24. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417-5 (2006). [CrossRef]
  25. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601-4 (2002). [CrossRef] [PubMed]
  26. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405-11 (2002). [CrossRef]
  27. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904-4 (2005). [CrossRef] [PubMed]
  28. R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. N¨otzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, "InP-based twodimensional photonic crystals filled with polymers," Appl. Phys. Lett. 88, 161112-3 (2006). [CrossRef]
  29. A. Aspect, R. Kaiser, N. Vansteenkiste, P. Vignolo, and C. I. Westbrook, "Nondestructive detection of atoms bouncing on an evanescent wave," Phys. Rev. A 52, 4704-4708 (1995). [CrossRef] [PubMed]
  30. Z. Lu, J. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, J. P. Samluk, and D.W. Prather, "Perfect lens makes a perfect trap," Opt. Express 14, 2228-2235 (2006). [CrossRef] [PubMed]
  31. K. Okamoto and S. Kawata, " Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999). [CrossRef]
  32. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001). [CrossRef] [PubMed]
  33. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425-7 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited