OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 14 — Jul. 10, 2006
  • pp: 6463–6468

Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency

Qianfan Xu, Jagat Shakya, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 14, Issue 14, pp. 6463-6468 (2006)
http://dx.doi.org/10.1364/OE.14.006463


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Direct time-domain measurement of tunable optical delay in a silicon resonating structure is presented. The structure is composed by a double-ring resonator, whose spectrum has a narrow transparency peak with low group velocity analogous to that in electromagnetically induced transparency. Effective group indices from 90 to 290 are obtained by tuning the resonator thermally. The measurements agree well with the theoretical analysis.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: May 31, 2006
Revised Manuscript: July 2, 2006
Manuscript Accepted: July 3, 2006
Published: July 10, 2006

Citation
Qianfan Xu, Jagat Shakya, and Michal Lipson, "Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency," Opt. Express 14, 6463-6468 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  2. Y. A. Vlasov, and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). [CrossRef] [PubMed]
  3. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004). [CrossRef]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  7. S. Chan, and P. M. Fauchet, "Silicon microcavity light emitting devices," Opt. Mater. 17,31-34 (2001). [CrossRef]
  8. R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and Oded Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005). [CrossRef] [PubMed]
  9. Q. Xu, V. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437--4442 (2004). [CrossRef] [PubMed]
  10. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  11. H. Rong, A. Liu, R. Jones1, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia1, "An all-silicon Raman laser," Nature 433, 292 - 294 (2005). [CrossRef] [PubMed]
  12. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006). [CrossRef] [PubMed]
  13. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  14. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  15. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency," Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  16. S. E. Harris, "Electromagnetically induced transparency," Physics Today 50(7), 36-42 (1997). [CrossRef]
  17. M. D. Lukin, and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001). [CrossRef] [PubMed]
  18. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  19. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled-resonator-induced transparency," Phys. Rev. A 69, 063804 (2004). [CrossRef]
  20. J. E. Heebner, and R. W. Boyd, "'Slow' and 'fast' light in resonator-coupled waveguides," J. Mod. Opt. 49, 2629-2636 (2002). [CrossRef]
  21. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005). [CrossRef]
  22. W. Suh, Z. Wang, and S. Fan, "Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities," IEEE J. Quantum. Electron. 40, 1511-1518 (2004). [CrossRef]
  23. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 626-628 (2004). [CrossRef] [PubMed]
  24. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, "Interference effects in lossy resonator chains," J. Mod. Opt. 51, 2515-2522 (2004). [CrossRef]
  25. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004). [CrossRef] [PubMed]
  26. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, "Induced transparency and absorption in coupled whispering-gallery microresonators," Phys. Rev. A 71, 043804 (2005). [CrossRef]
  27. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokebun, "Second-order filter response from parallel coupled glass microring resonators," IEEE Photon. Technol. Lett. 11, 1426-1428 (1999). [CrossRef]
  28. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, M. Lipson, "Transmission of high data rate optical signals through a micron-scale silicon ring resonator," Opt. Lett. (to be published).
  29. G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 µm in silicon etalon," Electron. Lett. 28, 83-84 (1992). [CrossRef]
  30. K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited