OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 14 — Jul. 10, 2006
  • pp: 6485–6501

Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference

Heping Xu and Michael S. Patterson  »View Author Affiliations


Optics Express, Vol. 14, Issue 14, pp. 6485-6501 (2006)
http://dx.doi.org/10.1364/OE.14.006485


View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We estimated the absorption and reduced scattering coefficients of tissue-simulating phantoms from interstitial measurements of the phase difference and relative amplitude signals at two distances from a sinusoidally modulated isotropic source. It was found that absorption and reduced scattering coefficients can be recovered within 10% and slightly over 10% respectively, using either the data collected by two detectors 3mm apart or by two detectors 5mm apart with light collected by one detector attenuated by a neutral density filter. This accuracy was achieved over a wide range of optical properties, µa=0.008 to 0.17mm-1 and µ s ’=0.3 to 1.8mm-1. Additional factors affecting accuracy including source anisotropy, uncertainty in fiber placement, phase amplitude crosstalk, and the forward light propagation model (the combined isotropic similarity model and standard diffusion approximation versus the modified spherical harmonics method) were studied by Monte Carlo simulations (first two factors) and experiments (last two factors).

© 2006 Optical Society of America

OCIS Codes
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(170.5270) Medical optics and biotechnology : Photon density waves
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 11, 2006
Revised Manuscript: June 15, 2006
Manuscript Accepted: June 27, 2006
Published: July 10, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Heping Xu and Michael S. Patterson, "Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference," Opt. Express 14, 6485-6501 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6485


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47,555-606 (1996). [CrossRef] [PubMed]
  2. R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, "Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness," Phys Med Biol. 47,193-208 (2002). [CrossRef] [PubMed]
  3. R. Weissleder and V. Ntziachristos, "Shedding light onto live molecule targets," Nature. Med. 9,123-128 (2003). [CrossRef] [PubMed]
  4. M. S. Patterson and B. C. Wilson, "Photodynamic therapy," in The Modern Technology of Radiation Oncology, J. Van Dyk, eds. (Medical Physics Publishing, Madison, Wisconsin 1999), Chap. 23.
  5. Z. Huang, "A review of progress in clinical photodynamic therapy," Technol. Cancer. Res. Treat. 4,283-293 (2005). [PubMed]
  6. T. C. Zhu, S. M. Hahn, A. S. Kapatkin, A. Dimofte, C. E. Rodriguez, T. G. Vulcan, E. Glatstein, and R. A. His, "In-vivo optical properties of normal canine prostate at 732nm using motexafin lutetium mediated photodynamic therapy," Photochem. Photobiol. 77,81-88 (2003). [CrossRef] [PubMed]
  7. T. C. Zhu, A. Dimofte, F. C. Finlay, D. Stripp, T. Bush, J. Miles, R. Whittington, S. B. Malkowicz, Z. Tochner, E. Glatstein, and S. M. Hahn, "Optical properties of human prostate at 732nm measured in-vivo during motexafin lutetium mediated photodynamic therapy," Photochem. Photobiol. 81,96-105 (2005). [CrossRef]
  8. A. Dimofte, J. C. Finlay, and T. C. Zhu, "A method for determination of the absorption and scattering properties interstitially in turbid media," Phys Med Biol. 50,2291-2311 (2005). [CrossRef] [PubMed]
  9. H. Xu, T. J. Farrell, and M. S. Patterson, "Investigation of light propagation models to determine the optical properties of tissue from interstitial frequency domain fluence measurements," J. Biomed. Opt.(to be published2006). [CrossRef] [PubMed]
  10. V. A. Markel, "Modified spherical harmonics method for solving the radiative transport equation," Waves Random Media 14, L13-L19 (2004). [CrossRef]
  11. G. Panasyuk, J. C. Schotland, and V. A. Markel, "Radiative transport equation in rotated reference frames," J. Phys. A,  39,115-137 (2006). [CrossRef]
  12. H. Xu and M. S. Patterson, "Application of the modified spherical harmonics method to some problems in biomedical optics," Phys. Med. Biol. 51, N247-N251 (2006). [CrossRef] [PubMed]
  13. J. B. Fishkin and E. Gratton, "Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge," J. Opt. Soc. Am. A. 10,127-140 (1993). [CrossRef] [PubMed]
  14. S. L. Jacques, and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-thermal response of laser-irradiated tissue, A. J. Welch and M. J. van Gemert, eds. (Plenum Press, New York 1995), Chap. 4.
  15. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93,70-83, (1941). [CrossRef]
  16. P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences (2nd ed. McGraw-Hill, Inc. 1992).
  17. H. J. van Staveren, C. J. M. Moes, J. Van Marle, S. A. Prahl, and M. J. C. Van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30,4507-4514 (1997). [CrossRef]
  18. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. Van Gemert, "Optical properties of Liposyn: a phantom medium for light propagation studies," Lasers Surg. Med. 12,510-519 (1992). [CrossRef] [PubMed]
  19. R. C. Smith and K.S. Baker, "Optical properties of the clearest natural waters (200-800nm)," Appl. Opt. 20,177-184 (1981). [CrossRef] [PubMed]
  20. S. J. Madsen, M. S. Patterson, and B. C. Wilson, "The use of India ink as an optical absorber in tissue-simulating phantoms," Phys. Med. Biol. 37, 985-993 (1992). [CrossRef] [PubMed]
  21. L. Lilge and B. C. Wilson, "The accuracy of interstitial measurements of absolute light fluence rate in the determination of tissue optical properties," in Proceedings of Laser-tissue Interaction IV, S. L. Jacques and A. Katzir, eds., Proc SPIE 1882, 291-304 (1993). [CrossRef]
  22. N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, "Sources of phase noise in homodyne phase modulation devices used for tissue oximetry studies," Rev. Sci. Instrum. 69,3042-3054 (1998). [CrossRef]
  23. I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, "Instrumentation for the accurate measurement of phase and amplitude in optical tomography," Rev. Sci. Instrum. 73,3306-3312 (2002). [CrossRef]
  24. S. Yokoyama and A. Okamoto, "Examination to eliminate undesirable phase delay of an avalanche photodiode (APD) for intensity-modulated light," Rev. Sci. Instrum. 66,5331-5336 (1995). [CrossRef]
  25. K. Alford and Y. Wickramasinghe, "Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy," Rev. Sci. Instrum. 71,2191-2195 (2000). [CrossRef]
  26. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69,3457-3481 (1998). [CrossRef]
  27. L. Lilge, N. Pomerleau-Dalcourt, A. Douplik, S. H. Selman, R. W. Keck, M. Szkudlarek, M. Pestka, and J. Jankun, "Transperineal in vivo fluence-rate dosimetry in the canine prostate during SnET2-mediated PDT," Phys. Med. Biol. 49,3209-3225 (2004). [CrossRef] [PubMed]
  28. S. Gross, A. Gilead, A. Scherz, M. Neeman, and Y. Salomon, "Monitoring photodynamic therapy of solid tumors on-line by BOLD-contrast MRI," Nat. Med. 9, 1327-1331 (2003). [CrossRef] [PubMed]
  29. M. Gerken and G. W. Faris, "High-precision frequency-domain measurements of the optical properties of turbid media," Opt. Lett. 24,930-932, (1999). [CrossRef]
  30. J. B. Fishkin, P. T. C. So, A.E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, "Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom," Appl. Opt. 34,1143-1155 (1995). [CrossRef] [PubMed]
  31. M. Niedre, M. S. Patterson, and B. C. Wilson, "Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo," Photochem. Photobio. 75,382-391 (2002). [CrossRef]
  32. Q. Chen, Z. Huang, D. Luck, J. Beckers, P. Brun, B. C. Wilson, A. Scherz, Y. Salomon, and F. W. Hetzel, "Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancer," Photochem. Photobio. 76,438-445, (2002). [CrossRef]
  33. Z. Huang, Q. Chen, N. Trncic, S. M. LaRue, P. Brun, B. C. Wilson, H. Shapiro, and F. W. Hetzel, "Effects of Pd-bacteriopheophorbide (Tookad) mediated photodynamic therapy on canine prostate pretreated with ionizing radiation," Radiat. Res. 161, 723-731, (2004). [CrossRef] [PubMed]
  34. R. A. Weersink, K. Diamond, B. C. Wilson, and M. S. Patterson, "Determination of the peak absorption wavelength and pharmacokinetics of WST11 in vivo using dynamic, spatially resolved diffuse reflectance spectroscopy in a rabbit model," Technical report (2003).
  35. R. A. Weersink, A. Bogaards, M, Gertner, S. R. H. Davidson, K. Zhang, G. Netchev, J. Trachtenberg, and B. C. Wilson, "Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities," J. Photochem. Photobiol B: Biology. 79. 211-222 (2005). [CrossRef] [PubMed]
  36. T. H. Foster and L. Gao, "Dosimetry in photodynamic therapy: oxygen and the critical importance of capillary density," Radiat. Res. 130,379-383, (1992). [CrossRef] [PubMed]
  37. T. C. Zhu, J. C. Finlay, and S. M. Hahn, "Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in vivo in human prostate during during motexafin lutetium mediated photodynamic therapy," J. Photochem. Photobiol B: Biology. 79, 231-241 (2005). [CrossRef] [PubMed]
  38. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39,6498-6507 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited