OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 14 — Jul. 10, 2006
  • pp: 6516–6534

Non-contact fluorescence optical tomography with scanning patterned illumination

Amit Joshi, Wolfgang Bangerth, and Eva M. Sevick-Muraca  »View Author Affiliations


Optics Express, Vol. 14, Issue 14, pp. 6516-6534 (2006)
http://dx.doi.org/10.1364/OE.14.006516


View Full Text Article

Enhanced HTML    Acrobat PDF (1818 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This article describes a novel non-contact fluorescence optical tomography scheme which utilizes multiple area illumination patterns, to reduce the ill-posedness of the inverse problem involved in recovering interior fluorescence yield distributions in biological tissue from boundary fluorescence measurements. The image reconstruction is posed as an optimization problem which seeks a tissue optical property distribution minimizing, for all illumination patterns simultaneously, a regularized difference between the observed boundary measurements of light distribution, and the boundary measurements predicted from a physical model. Multiple excitation source illumination patterns are described by line and Gaussian sources scanning the simulated tissue phantom surface and by employing diffractive optics-generated patterns. Multiple measurement data sets generated by scanning excitation sources are processed simultaneously to generate the interior fluorescence distribution in tissue by implementing the fluorescence tomography algorithm in a parallel framework suitable for multiprocessor computers. Image reconstructions for single and multiple fluorescent targets (5mm diameter) embedded in a 512ml simulated tissue phantom are demonstrated, with depths of the fluorescent targets from the illumination plane between 1cm to 2cm. We show both qualitative and quantitative improvements of our algorithm over reconstructions from only a single measurement.

© 2006 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 25, 2006
Revised Manuscript: June 29, 2006
Manuscript Accepted: July 3, 2006
Published: July 10, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Amit Joshi, Wolfgang Bangerth, and Eva M. Sevick-Muraca, "Non-contact fluorescence optical tomography with scanning patterned illumination," Opt. Express 14, 6516-6534 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6516


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Luminescence 60, 281-286 (1994). [CrossRef]
  2. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 20, 426-428 (1996).
  3. E. M. Sevick-Muraca and C. L. Burch, "The origin of phosphorescent and fluorescent signals in tissues," Opt. Lett. 19, 1928-1930 (1994). [CrossRef] [PubMed]
  4. E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997). [CrossRef]
  5. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogenous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt. 35, 3746-3758 (1996). [CrossRef] [PubMed]
  6. X. D. Li, B. Chance, and A. G. Yodh, "Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption," Appl. Opt. 37, 6833-6844 (1998). [CrossRef]
  7. J. C. Schotland, "Continuous wave diffusion imaging," J. Opt. Soc. Am. A 14, 275-279 (1997). [CrossRef]
  8. V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche. "Inverse method 3-D reconstruction of localized in vivo fluorescence-application to Sjøgren syndrome," IEEE J. Sel. Top. Quantum Electron. 54, 930-935 (1999).
  9. J. Wu, Y. Wang, L. Perleman, I. Itzkan, R. R. Desai, and M. S. Feld, "Time resolved multichannel imaging of fluorescent objects embedded in turbid media," Opt. Lett. 20, 489-491 (1995). [CrossRef] [PubMed]
  10. E. L. Hull, M. G. Nichols, and T. H. Foster, "Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of CW diffuse luminescence emittance," Appl. Opt. 37, 2755-2765 (1998). [CrossRef]
  11. A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003). [CrossRef]
  12. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three dimensional near infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. Nat. Acad. Sci. 99, 9619-9624 (2002). [CrossRef] [PubMed]
  13. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005). [CrossRef] [PubMed]
  14. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003). [CrossRef] [PubMed]
  15. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  16. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  17. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  18. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003). [CrossRef] [PubMed]
  19. G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005). [CrossRef] [PubMed]
  20. A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, and K. J. Webb, "Statistical approach for detection and localization of a fluorescing mouse tumor in intralipid," Appl. Opt. 44, 2300 (2005). [CrossRef] [PubMed]
  21. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004). [CrossRef] [PubMed]
  22. A. B. Thompson and E. M. Sevick-MuracaNIR fluorescence contrast enhanced imaging with ICCD homodyne detection: Measurement precision and accuracy." J. Biomed. Opt. 8, 111-120 (2002). [CrossRef]
  23. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, "Adaptive finite element modeling of optical fluorescenceenhanced tomography," Opt. Express 12, 5402-5417 (2004). [CrossRef] [PubMed]
  24. A. Joshi, W. Bangerth, K. Hwang, J. Rasmussen, and E. M. Sevick-Muraca," "Plane wave fluorescence tomography with adaptive finite elements," Opt. Lett. 31, 193-195 (2006). [CrossRef] [PubMed]
  25. J. Nocedal and S. J. Wright. Numerical Optimization. (New York: Springer, 1999). [CrossRef]
  26. R. Roy and E. M. Sevick-Muraca, "Truncated Newton’s optimization schemes for absorption and fluorescence optical tomography: Part(1) theory and formulation," Opt. Express 4, 353-371 (1999). [CrossRef] [PubMed]
  27. W. Bangerth, Adaptive Finite Element Methods for the Identification of Distributed Coefficients in Partial Differential Equations. PhD thesis, University of Heidelberg, 2002.
  28. W. Bangerth, R. Hartmann, and G. Kanschat, deal. II Differential Equations Analysis Library, Technical Reference, 2006. http://www.dealii.org/
  29. W. Bangerth, A. Joshi and E. M. Sevick-Muraca, "Adaptive finite element methods for increased resolution in fluorescence optical tomography," Progr. Biomed. Optics Imag. 6, 318-329 (2005).
  30. "Development of a new optical imaging modality for detection of fluorescence enhanced disease," PhD dissertation, Texas A & M University, 2003.
  31. D. L. Everitt, S. Wei, and X. D. Zhu, "Analysis and optimization of diffuse photon optical tomography of turbid media," Phys. Rev. E 62, 2924-2936 (2000). [CrossRef]
  32. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis," Opt. Lett. 26, 701-703 (2001). [CrossRef]
  33. H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003). [CrossRef] [PubMed]
  34. E. E. Graves, J. P. Culver, J. Ripoll, and R. Weissleder, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004). [CrossRef]
  35. B.W. Pogue, T. O. McBride, U. L. Osterberg, and K. T. Paulsen, "Comparison of imaging geometries for diffuse optical tomography," Opt. Express 4, 270-286 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited