OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 14 — Jul. 10, 2006
  • pp: 6557–6563

Agile wide-angle beam steering with electrowetting microprisms

Neil R. Smith, Don C. Abeysinghe, Joseph W. Haus, and Jason Heikenfeld  »View Author Affiliations


Optics Express, Vol. 14, Issue 14, pp. 6557-6563 (2006)
http://dx.doi.org/10.1364/OE.14.006557


View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel basis for beam steering with electrowetting microprisms (EMPs) is reported. EMPs utilize electrowetting modulation of liquid contact angle in order to mimic the refractive behavior for various classical prism geometries. Continuous beam steering through an angle of 14° (±7°) has been demonstrated with a liquid index of n=1.359. Experimental results are well-matched to theoretical behavior up to the point of electrowetting contact-angle saturation. Projections show that use of higher index liquids (n~1.6) will result in steering through ~30° (±15°). Fundamental factors defining achievable deflection range, and issues for Ladar use, are reviewed. This approach is capable of good switching speed (~ms), polarization independent operation, modulation of beam field-of-view (lensing), and high steering efficiency that is independent of deflection angle.

© 2006 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(010.3640) Atmospheric and oceanic optics : Lidar
(230.2090) Optical devices : Electro-optical devices
(230.5480) Optical devices : Prisms

ToC Category:
Optical Devices

History
Original Manuscript: April 24, 2006
Revised Manuscript: June 21, 2006
Manuscript Accepted: June 23, 2006
Published: July 10, 2006

Citation
Neil R. Smith, Don C. Abeysinghe, Joseph W. Haus, and Jason Heikenfeld, "Agile wide-angle beam steering with electrowetting microprisms," Opt. Express 14, 6557-6563 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Jelalian, Laser Radar Systems, Artech House, Boston-London 1992.
  2. J. D. Zook, "Light beam deflector performance: a comparative analysis," Appl. Opt. 13, 875-887 (1974). [CrossRef] [PubMed]
  3. L. Sun, J. H. Kim, C. H. Jang, D. C. An, X. J. Lu, Q. J. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. N. Tang, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymeric waveguide prism-based electro-optic beam deflector," Opt. Eng. 40, 1217-1222 (2001). [CrossRef]
  4. B. D. Duncan, P. J. Bos and V. Sergan, "Wide-angle achromatic prism beam steering for infrared countermeasures," Opt. Eng. 42, 1038-1047 (2003). [CrossRef]
  5. J. L. Gibson, B. D. Duncan, E. A. Watson and J. S. Loomis, "Wide-angle decentered lens beam steering for infrared countermeasures applications," Opt. Eng. 43, 2312-2321 (2004). [CrossRef]
  6. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, "Optical Phased Array Technology," Proc. IEEE 84, 268-298 (1996). [CrossRef]
  7. P. F. McManamon, "Agile Nonmechanical Beam Steering," Opt. and Phot. News,  17, 25-29 (2006).
  8. O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, B. K. Winker, "Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator," Mol. Crys. and Liq. Crys. 433, 279-295 (2005). [CrossRef]
  9. B. Winker, M. Mahajan, M. Hunwardsen, "Liquid crystal beam directors for airborne free-space optical communications," in Proc. of IEEE Conf. on Aerospace 3, 1702-1709 (2004).
  10. F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," J. Phy. Condens. Matter 17, R705-R774 (2005). [CrossRef]
  11. B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Euro. Phys. J. E 3, 159-163 (2000). [CrossRef]
  12. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004). [CrossRef]
  13. R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003). [CrossRef] [PubMed]
  14. J. Heikenfeld and A. J. Steckl, "Intense switchable fluorescence in light wave coupled electrowetting devices," Appl. Phys. Lett. 86, 011105 (2005). [CrossRef]
  15. J. Heikenfeld and A. J. Steckl, "Electrowetting Light Valves with Greater than 80% Transmission, Unlimited View Angle, and Video Response," Soc. Inf. Display Symposium Digest 36, 1674-1677 (2005). [CrossRef]
  16. S. Kuiper, B. H. W. Hendriks, R. A. Hayes, B. J. Feenstra, and J. M. E. Baken, "Electrowetting-Based Optics," Proc. of SPIE 5908, 0R1-0R7 (2005).
  17. S. Kuiper and B. H. W. Hendriks, L. J. Huijbregts, A. M. Hirschberg, C. A. Renders, M. A. J. van As, "Variable-focus liquid lens for portable applications," Proc. SPIE 5523, 100-109 (2004). [CrossRef]
  18. J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, "Electrowetting in Carbon Nanotubes," Science 310, 1480-1483 (2005). [CrossRef] [PubMed]
  19. G. Kaminski, "Micromachining of silicon mechanical structures," J. Vacuum Sci. and Technol. B. 3, 1015-1024 (1985). [CrossRef]
  20. F. Mugele, "Electrowetting beyond Lippmann’s approximations: field-induced surface distortions and finite conductivity effects in capillary breakup" International Electrowetting Workshop, Rochester, (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited