OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 15 — Jul. 24, 2006
  • pp: 6604–6612

Tuning the orbital angular momentum in optical vortex beams

Christian H. J. Schmitz, Kai Uhrig, Joachim P. Spatz, and Jennifer E. Curtis  »View Author Affiliations

Optics Express, Vol. 14, Issue 15, pp. 6604-6612 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a method to tune the local orbital angular momentum density in an optical vortex beam without changing its topological charge or geometric intensity distribution. We show that adjusting the relative amplitudes a and b of two interfering collinear vortex beams of equal but opposite helicity provides the smooth variation of the orbital angular momentum density in the resultant vortex beam. Despite the azimuthal intensity modulations that arise from the interference, the local orbital angular momentum remains constant on the vortex annulus and scales with the modulation parameter, c = (a-b)/(a+b).

© 2006 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.0090) Holography : Holography
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.7010) Lasers and laser optics : Laser trapping
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Diffraction and Gratings

Original Manuscript: May 11, 2006
Revised Manuscript: June 30, 2006
Manuscript Accepted: July 3, 2006
Published: July 24, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Christian H. J. Schmitz, Kai Uhrig, Joachim P. Spatz, and Jennifer E. Curtis, "Tuning the orbital angular momentum in optical vortex beams," Opt. Express 14, 6604-6612 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Poynting, "The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of cicularly polarised light," Proc. R. Soc. London A 82, 560-567 (1909). [CrossRef]
  2. R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Phys. Rev. 50, 115-125 (1936). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  4. G. Molina-Terriza, J. P. Torres, and L. Torner, "Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum," Phys. Rev. Lett. 88, 013601 (2002). [CrossRef] [PubMed]
  5. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, "Measuring the orbital angular momentum of a single photon," Phys. Rev. Lett. 88, 257901 (2002). [CrossRef] [PubMed]
  6. A. Vaziri, G. Weihs, and A. Zeilinger, "Experimental two-photon, three-dimensional entanglement for quantum communication," Phys. Rev. Lett. 89, 24041 (2002). [CrossRef]
  7. A. V. J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, "Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum," Phys. Rev. Lett. 91, 227902 (2003). [CrossRef] [PubMed]
  8. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, "Measuring entangled qutrits and their use for quantum bit commitment," Phys. Rev. Lett. 93, 053601 (2004). [CrossRef] [PubMed]
  9. G. Molina-Terriza, A. Vaziri, R. Ursin, and A. Zeilinger, "Experimental quantum coin tossing," Phys. Rev. Lett. 94, 040501 (2005). [CrossRef] [PubMed]
  10. K.-P. Marzlin and W. Zhang, "Vortex coupler for atomic Bose-Einstein condensates," Phys. Rev. Lett. 79, 4728 (1997). [CrossRef]
  11. J.W. R. Tabosa and D. V. Petrov, "Optical pumping of orbital angular momentum of light in cold cesium atoms," Phys. Rev. Lett. 83, 4967 (1999). [CrossRef]
  12. Z. Dutton and J. Ruostekoski, "Transfer and storage of vortex states in light and matter waves," Phys. Rev. Lett. 93, 193602 (2004). [CrossRef] [PubMed]
  13. K. T. Kapale and J. P. Dowling, "Vortex Phase Qubit: Generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams," Phys. Rev. Lett. 95, 173601 (2005). [CrossRef] [PubMed]
  14. H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995). [CrossRef] [PubMed]
  15. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169 (2002). [CrossRef]
  16. K. Ladavac and D. G. Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12, 1144-1149 (2004). [CrossRef] [PubMed]
  17. M. J. Padgett and L. Allen, "Light with a twist in its tail," Contemp. Phys. 41, 275-285 (2000). [CrossRef]
  18. L. Paterson,M. P. MacDonald, J. Arlt,W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001). [CrossRef] [PubMed]
  19. M. J. Padgett and L. Allen, "The Poynting vector in Laguerre-Gaussian laser modes," Opt. Commmun. 121, 36-40 (1995). [CrossRef]
  20. J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003). [CrossRef] [PubMed]
  21. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, "Size selective trapping with optical cogwheel tweezers," Opt. Express 12, 4129-4135 (2004). [CrossRef] [PubMed]
  22. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and Manipulation of Three-Dimensional Optically Trapped Structures," Science 296, 1101-1103 (2002). [CrossRef] [PubMed]
  23. K. Ladavac and D. G. Grier, "Colloidal hydrodynamic coupling in concentric optical vortices," Europhys. Lett. 70, 548-554 (2005). [CrossRef]
  24. S. H. Tao, X. C. Yuan, J. Lin, and R. E. Burge, "Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges," Opt. Express 14, 535-541 (2006). [CrossRef] [PubMed]
  25. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, "Topological charge and angular momentum of light beams carrying optical vortices," Phys. Rev. A 56, 4064-4074 (1997). [CrossRef]
  26. I. D. Maleev and G. A. Swartzlander, "Composite optical vortices," J. Opt. Soc. Am. B 20, 1169-1176 (2003). [CrossRef]
  27. M. Solja˘ci´c and M. Segev, "Integer and fractional angular momentum borne on self-trapped necklace-ring beams," Phys. Rev. Lett. 86, 420-423 (2001). [CrossRef] [PubMed]
  28. S. Lee and D. G. Grier, "Giant colloidal diffusivity on corrugated optical vortices," Phys. Rev. Lett.,  96, 190601 (2006). [CrossRef] [PubMed]
  29. M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microparticles," Nature 394, 348-350 (1998). [CrossRef]
  30. A. T. O’Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the doubling of the spin and orbital angular momentum with an optical spanner," Opt. Commun. 185, 139-143 (2000). [CrossRef]
  31. C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of holographic optical tweezers," Opt. Express 13, 8678-8685 (2005). [CrossRef] [PubMed]
  32. The general expression for the phase of a beam resulting from the collinear superposition of two optical vortex beams of equal but opposite topological charge is phi(theta) = arctan[ctan(ℓ (theta +α))]+π Round [ℓ(theta +α)/π]+2π +(phia +phib)/2, for c = 0 or theta +α 6= nπ/(2ℓ) with n = 1,3,5...(4ℓ−1) and phi(theta) = (cℓ/|c|)(theta +α)+2πℓ+(phia +phib)/2, for theta +α = nπ/(2ℓ) with n = 1,3,5...(4ℓ−1). The function Round(x) rounds the argument to its closest integer.
  33. S.-H. Lee, and D. G. Grier, "Robustness of holographic optical traps against phase scaling errors", Opt. Express 13, 7458-7464 (2005). [CrossRef] [PubMed]
  34. J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003). [CrossRef] [PubMed]
  35. J. Lin, X. C. Yuan, S. H. Tao, X. Peng, and H. B. Niu, "Deterministic approach to the generation of modified helical beams for optical manipulation," Opt. Express 13, 3862-3867 (2005). [CrossRef] [PubMed]
  36. A. T. O’Neil, I. MacVicar, L. Allen, and M. Padgett, "Intrinsic and extrinsic nature of the orbital angular momentum of a light beam," Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  37. K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, "Orbital angular momentum of a high-order Bessel light beam," J. Opt. B 4, S82-S89 (2002). [CrossRef]
  38. V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle," Phys. Rev. Lett. 91, 093602 (2003). [CrossRef] [PubMed]
  39. S. S. R. Oemrawsingh, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, "Intrinsic orbital angular momentum of paraxial beams with off-axis imprinted vortices," J. Opt. Soc. Am. A 21, 2089-2096 (2004). [CrossRef]
  40. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, "Gaussian beams with very high orbital angular momentum," Opt. Commun. 144, 210-213 (1997). [CrossRef]
  41. J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, "Symmetry dependence of holograms for optical trapping," Opt. Lett. 30, 2086-2088 (2005). [CrossRef] [PubMed]
  42. J. Courtial, R. Zambrini, M. R. Dennis, and M. Vasnetsov, "Angular momentum of optical vortex arrays," Opt. Express 14, 938-949 (2006). [CrossRef] [PubMed]
  43. A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read, "Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications," Opt. Express 14, 3065-3072 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited