OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 15 — Jul. 24, 2006
  • pp: 6634–6642

Polarization coded aperture

Wanli Chi, Kaiqin Chu, and Nicholas George  »View Author Affiliations

Optics Express, Vol. 14, Issue 15, pp. 6634-6642 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (556 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two examples are presented to illustrate the advantages of polarization coded apertures, in which the incoming light will rotate its polarization at a portion of an aperture. In the first example the depth of field of a diffraction limited lens is increased without sacrificing the light throughput; in the second example the axial focal intensity of a pixelated Fresnel zone plate is increased by 100%. Both examples work for linearly polarized or unpolarized illumination.

© 2006 Optical Society of America

OCIS Codes
(110.1220) Imaging systems : Apertures
(260.5430) Physical optics : Polarization

ToC Category:
Imaging Systems

Original Manuscript: May 22, 2006
Revised Manuscript: June 20, 2006
Manuscript Accepted: June 20, 2006
Published: July 24, 2006

Wanli Chi, Kaiqin Chu, and Nicholas George, "Polarization coded aperture," Opt. Express 14, 6634-6642 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ghosh, K. Murata and A. K. Chakraborty, "Frequency-response characteristics of a perfect lens masked by polarizing devices," J. Opt. Soc. Am. A 5,277-284 (1988). [CrossRef]
  2. D. R. Chowdhury, K. Bhattacharya, S. Sanyal and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure and Applied Optics,  4,98-104 (2002). [CrossRef]
  3. A. Zlotnik, Z. Zalevsky and E. Marom, "Superresolution with nonorthogonal polarization coding," Appl. Opt. 44,3705-3715 (2005). [CrossRef] [PubMed]
  4. E. H. Linfoot and E. Wolf, "Diffraction images in systems with an annular aperture," Proc. Phys. Soc. B 66,145-149 (1953). [CrossRef]
  5. T-C Poon and M. Motamedi, "Optical digital incoherent image-processing for extended depth of field," Appl. Opt. 26,4612-4615 (1987). [CrossRef] [PubMed]
  6. J. Ojeda-Castaneda and L. R. Berriel Valdos, "Abitrarily high focal depth with finite aperture," Opt. Lett. 13,183-185 (1988). [CrossRef] [PubMed]
  7. E. R. Dowski, Jr. and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34,1859- 1866 (1995). [CrossRef] [PubMed]
  8. W. Chi and N. George, "Computational imaging with the logarithmic asphere: theory," J. Opt. Soc. Am. A 20,2260-2273 (2003). [CrossRef]
  9. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (John Wiley & Sons, Inc., New York, 1999). Chapter 9 and references therein.
  10. T. D. Beynon, I. Kirk and T. R. Mathews, "Gabor zone plate with binary transmittance values," Opt. Lett. 17,544-546 (1992). [CrossRef] [PubMed]
  11. P.W. McOwan, M. S. Gordon andW. J. Hossack, "A switchable liquid crystal binary Gabor lens," Opt. Commun. 103,189-193 (1993). [CrossRef]
  12. R. E. English, Jr. and N. George, "Diffraction from a circular aperture: on axis field strength," Appl. Opt. 26,2360-2363 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited