OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 15 — Jul. 24, 2006
  • pp: 6724–6738

Plasmon-resonant gold nanorods as low backscattering albedo contrast agents

Amy L. Oldenburg, Matthew N. Hansen, Daniel A. Zweifel, Alexander Wei, and Stephen A. Boppart  »View Author Affiliations


Optics Express, Vol. 14, Issue 15, pp. 6724-6738 (2006)
http://dx.doi.org/10.1364/OE.14.006724


View Full Text Article

Enhanced HTML    Acrobat PDF (1949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmon-resonant gold nanorods are demonstrated as low back-scattering albedo contrast agents for optical coherence tomography (OCT). We define the backscattering albedo, a′, as the ratio of the backscattering to extinction coefficient. Contrast agents which modify a′ within the host tissue phantoms are detected with greater sensitivity by the differential OCT measurement of both a′ and extinction. Optimum sensitivity is achieved by maximizing the difference between contrast agents and tissue, |a′ca - a′tiss |. Low backscattering albedo gold nanorods (14 × 44 nm; λmax = 780 nm) within a high backscattering albedo tissue phantom with an uncertainty in concentration of 20% (randomized 2±0.4% intralipid) were readily detected at 82 ppm (by weight) in a regime where extinction alone could not discriminate nanorods. The estimated threshold of detection was 30 ppm.

© 2006 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.5850) Scattering : Scattering, particles

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 26, 2006
Revised Manuscript: July 6, 2006
Manuscript Accepted: July 7, 2006
Published: July 24, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Amy L. Oldenburg, Matthew N. Hansen, Daniel A. Zweifel, Alexander Wei, and Stephen A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6724


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208-1-14 (2005). [CrossRef]
  3. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). [CrossRef]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  5. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-341 (2003). [CrossRef] [PubMed]
  6. D. L. Marks and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett.  92, 123905- 1-4 (2004). [CrossRef] [PubMed]
  7. J. K. Barton, J. B. Hoying, and C. J. Sullivan, "Use of microbubbles as an optical coherence tomography contrast agent," Acad. Radiol. 9, S52-S55 (2002). [CrossRef] [PubMed]
  8. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, "Engineered microsphere contrast agents for optical coherence tomography," Opt. Lett. 28, 1546-1548 [CrossRef] [PubMed]
  9. C. Xu, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004). [CrossRef] [PubMed]
  10. C. Yang, L. E. L. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent," Opt. Lett. 29, 2016-2018 (2004). [CrossRef] [PubMed]
  11. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005). [CrossRef] [PubMed]
  12. Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, "Nanoprobe implantation into mammalian cells by cationic transfection," Chem. Commun. pp. 784-785 (2004).
  13. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, "Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity," Small 1, 325-327 (2005). [CrossRef]
  14. H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, "Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity," Langmuir 22, 2-5 (2006). [CrossRef]
  15. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998). [CrossRef]
  16. C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonicsbased imaging and therapy of cancer," Technol. Cancer Res. Treat. 3, 33-40 (2004). [PubMed]
  17. J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, "Gold nanocages: engineering their structure for biomedical applications," Adv. Mater. 17, 2255-2261 (2005). [CrossRef]
  18. K. Chen, Y. Liu, G. Ameer, and V. Backman, "Optimal design of structured nanospheres for ultrasharp lightscattering resonances as molecular imaging multilabels," J. Biomed. Opt. 10, 024005-1-6 (2005). [CrossRef] [PubMed]
  19. H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005). [CrossRef] [PubMed]
  20. J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262, 137-156 (1998). [CrossRef] [PubMed]
  21. S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999). [CrossRef]
  22. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes," Chem. Rev. 105, 1025-1102 (2005). [CrossRef] [PubMed]
  23. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, "Gold nanorods: Synthesis, characterization and applicatons," Coord. Chem. Rev. 249, 1870-1901 (2005). [CrossRef]
  24. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Natl. Acad. Sci. USA 102, 15752-15756 (2005). [CrossRef] [PubMed]
  25. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402-1-4 (2002). [CrossRef] [PubMed]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, pp. 141-154 (JohnWiley and Sons, 1983).
  27. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003). [CrossRef] [PubMed]
  28. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, J. Valanciunaite, J. Swartling, S. Andersson-Engels, and P. R. Hansen, "Determination of optical scattering properties of highlyscattering media in optical coherence tomography images," Opt. Express 12, 249-259 (2004). [CrossRef] [PubMed]
  29. L. Thrane, M. H. Frosz, T. M. Jorgensen, A. Tycho, H. T. Yura, and P. E. Andersen, "Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures," Opt. Lett. 29, 1641-1643 (2004). [CrossRef] [PubMed]
  30. D. J. Faber, F. J. van der Meer, and M. C. G. Aalders, "Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography," Opt. Express 12, 4353-4365 (2004). [CrossRef] [PubMed]
  31. J. M. Schmitt, A. Knuttel, and R. F. Bonner, "Measurement of optical properties of biological tissues by lowcoherence reflectometry," Appl. Opt. 32, 6032-6042 (1993). [CrossRef] [PubMed]
  32. W.-F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  33. T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001). [CrossRef] [PubMed]
  34. J. W. Pickering, S. A. Prahl, N. van Wieringer, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, "Double-integrating-sphere system for measuring the optical properties of tissue," Appl. Opt. 32, 399-410 (1993). [CrossRef] [PubMed]
  35. A. L. Oldenburg, D. A. Zweifel, C. Xu, A. Wei, and S. A. Boppart, "Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system," in Proceedings of SPIE: Plasmonics in biology and medicine II, vol. 5703, pp. 50-60 (2005).
  36. G. Zaccanti, S. D. Bianco, and F. Marelli, "Measurements of optical properties of high-density media," Appl. Opt. 42, 4023-4030 (2003). [CrossRef] [PubMed]
  37. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, "Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003). [CrossRef]
  38. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal, pp. 572-574 (Cambridge University Press, 1989).
  39. D. A. Zweifel and A. Wei, "Sulfide-arrested growth of gold nanorods," Chem. Mater. 17, 4256-4261 (2005). [CrossRef]
  40. A. Nel, T. Xia, L. Madler, and N. Li, "Toxic potential of materials at the nanolevel," Science 311, 622-627 (2006). [CrossRef] [PubMed]
  41. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994). [CrossRef] [PubMed]
  42. M. Liu and P. Guyot-Sionnest, "Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids," J. Phys. Chem. B 109, 22192-22200 (2005). [CrossRef]
  43. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectrosocpic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004). [CrossRef] [PubMed]
  44. C.-H. Chou, C.-D. Chen, and C. R. C. Wang, "Highly efficient, wavelength-tunable, gold nanoparitcle based optothermal nanoconvertors," J. Phys. Chem. B 109, 11135-11138 (2005). [CrossRef]
  45. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, "Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance," Proc. Natl. Acad. Sci. USA 100, 13549-13554 (2003). [CrossRef] [PubMed]
  46. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006). [CrossRef] [PubMed]
  47. T. B. Huff, M. H. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, "CTAB-mediated cell uptake of gold nanorods," Manuscriptsubmitted (2006).
  48. H. Liao and J. H. Hafner, "Gold nanorod bioconjugates," Chem. Mater. 17, 4636-4641 (2005). [CrossRef]
  49. Y. Zhao, W. Perez-Segarra, Q. Shi, and A. Wei, "Dithiocarbamate assembly on gold," J. Am. Chem. Soc. 127, 7328-7329 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited