OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 15 — Jul. 24, 2006
  • pp: 6755–6765

Imaging properties of dielectric photonic crystal slabs for large object distances

Guilin Sun, Aju S. Jugessur, and Andrew G. Kirk  »View Author Affiliations

Optics Express, Vol. 14, Issue 15, pp. 6755-6765 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We extend the understanding of the imaging properties of dielectric photonic crystal slabs to object distances that are larger than the slab thickness. We specifically consider hexagonal crystal lattices in the second band. For object distances smaller than the slab thickness, the image distance is a negative linear function of the object distance as expected for negative refractive index materials. The effective refractive index extracted from this linear object-image relation is close to the negative unity value calculated for infinite photonic crystal using the plane wave expansion method. In contrast to previous predictions, we find that a real image can still be formed for object distances up to twice the slab thickness. In this regime the image distance changes little as the object distance increases, and can thus be described as the saturated image regime. Sub-wavelength resolution performance can be approximately maintained even for these larger object distances. The full-width half-maximum spot size at the image is approximately (0.43-0.55)λ up to object distances 1.5 times the slab thickness. By evaluating the image angular frequency spectrum we show that this sub-wavelength resolution imaging at larger object distances is due to evanescent waves that arise within the slab, rather than being directly transferred from the object. The eventual loss of image resolution is due to interference side lobes which enter the image plane.

© 2006 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.2960) Imaging systems : Image analysis
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics
(350.5500) Other areas of optics : Propagation

ToC Category:

Original Manuscript: May 23, 2006
Revised Manuscript: July 13, 2006
Manuscript Accepted: July 14, 2006
Published: July 24, 2006

Guilin Sun, Aju S. Jugessur, and Andrew G. Kirk, "Imaging properties of dielectric photonic crystal slabs for large object distances," Opt. Express 14, 6755-6765 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and mu, " Soviet Phys.Uspekhi 10, 509-514 (1968, in Russian,1964). [CrossRef]
  2. J.B. Pentry, "Negative Refraction Makes a Perfect Lens," Phys. Rev.Lett. 85, 3966-3969 (2000). [CrossRef]
  3. D.R. Smith, W.J. Padina, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys.Rev.Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58,10096-10099 (1998). [CrossRef]
  5. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals, "J. Opt. Soc. Am. A 17, 1012-2020 (2000). [CrossRef]
  6. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  7. S. Enoch, G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Trans. Antennas Propag. 51, 2659-2666 (2003). [CrossRef]
  8. K. Sakoda, Optical properties of photonic crystals, (2nd ed., Springer-Verlag, New York, (2005)
  9. C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002). [CrossRef]
  10. Z.-Y. Li and L.-L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phys. Rev. B 68, 245110 (2003). [CrossRef]
  11. X. Wang, Z.F. Ren, and K. Kempa, "Unrestricted superlensing in a triangular two dimensional photonic crystal," Opt. Express 12, 2919-2924(2004). [CrossRef] [PubMed]
  12. S. He, Z. Ruan, L. Chen, and J. Shen, "Focusing properties of a photonic crystal slab with negative refraction, " Phys. Rev. B 70, 115113, (2004). [CrossRef]
  13. A. Martinez and J. Marti, "Negative refraction in two-dimensional photonic crystals: role of lattice orientation and interface termination," Phys. Rev. B 71, 235115 (2005). [CrossRef]
  14. A. Martínez, H. Míguez, J. Sánchez-Dehesa, and J. Martí, "Analysis of wave propagation in a twodimensional photonic crystal with negative index of refraction: plane wave decomposition of the Bloch modes," Opt. Express 13, 4160-4174 (2005). [CrossRef] [PubMed]
  15. S. Foteinopoulou and C.M. Soukoulis, "Electromagnetic wave propagation in two-dimentional photonic crystals: a study of anomalous refractive effects," Phys. Rev. B 72, 165112(2005) [CrossRef]
  16. R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, "Refraction and rightness in photonic crystals," Opt. Express 13, 8596-8605 (2005). [CrossRef] [PubMed]
  17. J. B. Pendry and S.A. Ramakrishna, "Near-field lenses in two dimensions," J. Phys: Condens. Matter 14, 8463-8479, 2002 [CrossRef]
  18. C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, " Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003). [CrossRef]
  19. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, " Negative refraction and superlens behavior in a two-dimensional photonic crystal," Phys. Rev. B 71, 085106 (2005). [CrossRef]
  20. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  21. E. Schonbrun, M. Tinker, W. Park, and J.-B. Lee, "Negative refraction on a Si-Polymer photonic crystal membrane," IEEE Photon. Technol. Lett. 17, 1196-1198 (2005). [CrossRef]
  22. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1 and C.M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens, " Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  23. Z. Lu, S. Shi, C. Schuetz, and D. Prather, "Experimental demonstration of negative refraction imaging in both amplitude and phase," Opt. Express 13, 2007-2012 (2005). [CrossRef] [PubMed]
  24. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, "Fourier analysis of Bloch wave propagation in photonic crystals," J. Opt. Soc. Am. B 22, 1179-1190 (2005) [CrossRef]
  25. S. Xiao, Z. Ruan, M. Qiu, L. Shen, S. He, "Theoretical investigation on point imaging by photonic crystal slab using negative refraction," Appl. Phys. Lett. 85, 4269-4271(2004). [CrossRef]
  26. Z. Feng, X. Zhang, K. Ren, S. Feng, Z.-Y. Li, B. Cheng, and D. Zhang, "Experimental demonstration of non-near-field image formed by negative refraction," Phys. Rev. B 73, 075118 (2006) [CrossRef]
  27. G. Sun, A. S. Jugessur, and A. G. Kirk, "Saturated super-resolution imaging of photonic crystal with negative refraction," in Proceedings of Optical Data Storage Topical Meeting, IEEE-LEOS, SPIE and OSA, 73-75, (2006).
  28. Z. Ruan, M. Qiu, S. Xiao, S. He and L. Thylen, "Coupling between plane wave and Bloch waves in photonics in photonics crystals with negative refraction," Phys. Rev. B 71, 04511(2005) [CrossRef]
  29. X. Wang, Z.F. Ren, and K. Kempa, "Improved superlensing in two-dimensional photonic crystals with a basis,"Appl. Phys. Lett. 86, 061105 (2005). [CrossRef]
  30. R. Zengerla and P.C. Hoang, "Wide-angle beam refocusing using negative refraction in non-uniform photonic crystal waveguides," Opt. Express 13, 5719-5730 (2005). [CrossRef]
  31. S. Ponti and C. Oldano, "Open problems in the optics of crystals: The role of multiple scattering," Phys. Rev. E 67, 036616 (2003). [CrossRef]
  32. A.J. den Dekker and A. van den Bos, "Resolution: a survey," J. Opt. Soc. Am. A14, 547-557, (1997) [CrossRef]
  33. M. Born and E. Wolf, Principles of optics electromagnetic theory of propagation, interference and diffraction of light, 7th Ed., Cambridge University Press, Cambridge, UK, 1999.
  34. J. Witzens, T. Baehr-Jones, and A. Scherer, "Hybrid superprism with low insertion losses and suppressed cross-talk," Phys. Rev. E 71, 026604 (2005). [CrossRef]
  35. L. Liu and S. He, "Near-field optical storage system using a solid immersion lens with a left-handed material slab," Opt. Express 12, 4835-4840 (2004). [CrossRef] [PubMed]
  36. S. Mimouni, Y. Desieres, S. Gidon, L. Poupinet, P. Chaton, and P. Royer, "Near-field optical storage system including evanescent wave amplifier metamaterial based on photonic crystal," in Photonic Crystal Materials and Devices III, R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE, 6182, 61821L1-9, (2006) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited