OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 15 — Jul. 24, 2006
  • pp: 6800–6812

Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation

Rui Zhang, Jörn Teipel, and Harald Giessen  »View Author Affiliations

Optics Express, Vol. 14, Issue 15, pp. 6800-6812 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have numerically studied a hollow-core photonic crystal fiber, with its core filled with highly nonlinear liquids such as carbon disulfide and nitrobenzene. Calculations show that the fiber has an extremely high nonlinear parameter γ on the order of 2.4/W/m at 1.55 μm. The group velocity dispersion of this fiber exhibits an anomalous region in the near-infrared, and its zero-dispersion wavelength is around 1.55 μm. This leads to potentially significant improvements and a large bandwidth in supercontinuum generation. The spectral properties of the supercontinuum generation in liquid-core photonic crystal fibers are simulated by solving the generalized nonlinear Schrödinger equation. The results demonstrate that the liquid-core PCF is capable to generate dramatically broadened supercontinua in a range from 700 nm to more than 2500 nm when pumping at 1.55 μm with subpicosecond pulses.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: May 5, 2006
Revised Manuscript: June 26, 2006
Manuscript Accepted: July 13, 2006
Published: July 24, 2006

Rui Zhang, Jörn Teipel, and Harald Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, "Photonic crystal fibres," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. P. Rigby, "A photonic crystal fibre," Nature 396, 415-416 (1998). [CrossRef]
  3. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002). [CrossRef]
  4. K. J. Ranka, S. R. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  5. J. Hansryd and P. A. Andrekson, "Broad-band continuous-wave-pumped fiber optical parameteric amplifier with 49-dB gain and wavelength-conversion efficiency," IEEE Photon. Technol. Lett. 13, 194-196 (2001). [CrossRef]
  6. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, M. Abe, Y. Inoue, T. Shibata, T. Morioka, and K. I. Sato, "More than 1000 chammel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," IEE Electron. Lett. 36, 2089-2090 (2000). [CrossRef]
  7. A. V. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," Opt. Lett. 19, 2171-2182 (2002).
  8. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  9. S. Coen, AHL. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B,  19, 753-764, (2002). [CrossRef]
  10. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub- 30 fs pulses," Opt. Express 12, 4614-4624 (2004). [CrossRef] [PubMed]
  11. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, A. Tünnermann, " Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths, " Opt. Express 13, 9556-9569 (2005). [CrossRef] [PubMed]
  12. T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, "High nonlinearity extruded single-mode holey optical fibers," Anaheim, CA, Postdeadline Paper FA1, 19-21 March 2002.
  13. V. V. R. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, and A. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002). [PubMed]
  14. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. S. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006). [CrossRef] [PubMed]
  15. G. S. He and P. N. Prasad, "Stimulated Kerr scattering and reorientation work of molecules in liquid CS2," Phys. Rev. A 41, 2687-2697 (1990). [CrossRef] [PubMed]
  16. T. J. Bridges, A. R. Chraplyvy, J. G. Bergman, Jr., and R. M. Hart, "Broadband infrared generation in liquid-bromine-core optical fibers," Opt. Lett. 7, 566-568 (1982). [CrossRef] [PubMed]
  17. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890-3895, (2005). [CrossRef] [PubMed]
  18. M. Böhm, H. Hartwig, and F. Mitschke, "Präparation von mit Flüssigkeiten gefüllten mikrostrukturierten Glasfasern," Frühjahrstagung der DPG Berlin 2005, Q 29.2 (2005).
  19. A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, "Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers," Opt. Express 13, 2977-2987 (2005) [CrossRef] [PubMed]
  20. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. -L. Auguste, and J. -M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005). [CrossRef] [PubMed]
  21. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006). [CrossRef] [PubMed]
  22. R. L. Sutherland, "Handbook of nonlinear optics," (Marcel Dekker, Inc., New York, USA, 1996), pp. 457.
  23. A. Samoc, "Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared," J. Appl. Phys. 94, 6167-6174 (2003). [CrossRef]
  24. T. Birks, J. Knight, and P.St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  25. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. de Sterke, "Calculations of air-guided modes in photonic crystal fibers using the multipole method," Opt. Express 11, 721-732 (2001). [CrossRef]
  26. B. J. Eggleton, P.S. Westbrook, R. S. Windeler, S. Spalter, and T. A Strasser, "Grating resonances in air/silica micro structured optical fibers," Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  27. M. Midrio, M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: an analytical vectorial solution," J. Lightwave Technol. 18, 1031-1037 (2000). [CrossRef]
  28. Y. Li, C. Wang, M. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004). [CrossRef]
  29. G. P. Agrawal, "Nonlinear Fiber Optics - Optics and Photonics," Third Edition, (Academic Press, San Diego, USA, 2001), pp. 36.
  30. A. W. Snyder, and J. D. Love, "Optical waveguide theory," (London, 1983). Chapter 12-15.
  31. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005). [CrossRef]
  32. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered Single-mode Fibres and Devices Part 1: Adiabaticity Criteria," IEE Proceedings-J. 138, 343-354 (1991).
  33. R. Zhang, X. P. Zhang, and H. Giessen, "Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber," Opt. Express 12, 5840-5849 (2004). [CrossRef] [PubMed]
  34. J. M. Dudley, and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002). [CrossRef]
  35. D. McMorrwo, W. T. Lotshaw, and G. A. Kenney-Wallace, "Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids," IEEE J. Quantum Electron. 24, 443-454 (1988). [CrossRef]
  36. R. W. Hellwarth, "Third- order optical susceptibilities of liquids and solids," Prog. Quantum Electron. 5, 1 (1977). [CrossRef]
  37. B. F. Levine and C. G. Bethea, "Second and third order hyperpolarizabilities of organic molecules," J. Chem. Phys. 63, 2666-2682 (1975). [CrossRef]
  38. I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha, "Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures," J. Chem. Phys. 123, 054509 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited