OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 15 — Jul. 24, 2006
  • pp: 6851–6857

Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators

Linjie Zhou and Andrew W. Poon  »View Author Affiliations

Optics Express, Vol. 14, Issue 15, pp. 6851-6857 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a silicon electro-optic modulator using a 10-micron-diameter microdisk resonator with a laterally integrated p-i-n diode surrounding essentially the entire microdisk. Our experiments reveal a modulation bandwidth of 510 MHz using a Q ~ 16,900 resonance mode under a square-wave drive voltage of ~0.9 V forward bias and ~-6 V reverse bias.

© 2006 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:

Original Manuscript: June 12, 2006
Revised Manuscript: July 17, 2006
Manuscript Accepted: July 18, 2006
Published: July 24, 2006

Linjie Zhou and Andrew W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express 14, 6851-6857 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed and A. P. Knights, Silicon Photonics, (John Wiley, Chichester UK 2004). [CrossRef]
  2. L. Pavesi and D. J. Lockwood (Eds.), Silicon Photonics, (Springer-Verlag, Berlin, Germany 2004).
  3. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahibrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  4. A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003). [CrossRef]
  5. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004). [CrossRef]
  6. I. Kiyat, A. Aydinli, and N. Dagli, "High-Q silicon-on-insulator optical rib waveguide racetrack resonators," Opt. Express 13, 1900-1905 (2005). [CrossRef] [PubMed]
  7. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5525 (2004). [CrossRef]
  8. D. Xu, S. Janz, and P. Cheben, "Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering," IEEE Photon. Technol. Lett. 18, 343-345 (2006). [CrossRef]
  9. D. K. Sparacin, C. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K Gleason, "Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material," Opt. Lett. 30, 2251-2253 (2005). [CrossRef] [PubMed]
  10. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13,1515-1530 (2005). [CrossRef] [PubMed]
  11. T. Indukuri, P. Koonath, and B. Jalali, "Subterranean silicon photonics: demonstration of buried waveguide-coupled microresonators," Appl. Phys. Lett. 87, 081114 (2005). [CrossRef]
  12. A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, "Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology," IEEE Photon. Technol. Lett. 17, 1447-1449 (2005). [CrossRef]
  13. C. Y. Chao and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006). [CrossRef]
  14. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, "Integrated wavelength-selective optical MEMS switching using ring resonator filters," IEEE Photon. Technol. Lett. 17, 1190-1192 (2005). [CrossRef]
  15. M. M. Lee and M. C. Wu, "MEMS-actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005). [CrossRef]
  16. S. Yamagata, T. Kato and Y. Kokobun, "Non-blocking wavelength channel switch using TO effect of double series-coupled microring resonator," Electron. Lett. 41, 593-595 (2005). [CrossRef]
  17. I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermooptical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006). [CrossRef]
  18. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon", IEEE J. Quant. Electron. 23, 123-129 (1987). [CrossRef]
  19. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  20. C. Manolatou and M. Lipson, "All-optical silicon modulators based on carrier injection by two-photon absorption," J. Lightwave Technol. 24, 1433-1439 (2006). [CrossRef]
  21. L. Zhou and A. W. Poon, "Silicon-on-insulator tunable waveguide-coupled microdisk resonators with selectively integrated p-i-n diodes," in Proceedings of Conference on Lasers Electro-Optics, Baltimore, MD (Optical Society of America, Washington, D. C., 2005).
  22. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1305 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited