OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 15 — Jul. 24, 2006
  • pp: 6870–6878

Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers

Krishna Mohan Gundu, Miroslav Kolesik, Jerome V. Moloney, and Kyung Shik Lee  »View Author Affiliations


Optics Express, Vol. 14, Issue 15, pp. 6870-6878 (2006)
http://dx.doi.org/10.1364/OE.14.006870


View Full Text Article

Enhanced HTML    Acrobat PDF (94 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method to control the chromatic dispersion properties of photonic crystal fibers using the selective hole filling technique. The method is based on a single hole-size fiber geometry, and uses an appropriate index-matching liquid to modify the effective size of the filled holes. The dependence of dispersion properties of the fiber on the design parameters such as the refractive index of the liquid, lattice constant and hole diameter are studied numerically. It is shown that very small dispersion values between 0±0.5ps/nm-km can be achieved over a bandwidth of 430–510nm in the communication wavelength region of 1300–1900nm. Three such designs are proposed with air hole diameters in the range 1.5–2.0μm.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: June 9, 2006
Revised Manuscript: July 3, 2006
Manuscript Accepted: July 4, 2006
Published: July 24, 2006

Citation
Krishna Mohan Gundu, Miroslav Kolesik, Jerome V. Moloney, and Kyung Shik Lee, "Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers," Opt. Express 14, 6870-6878 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6870


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. S. J. Russel, "Deigning a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999). [CrossRef]
  2. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000). [CrossRef]
  3. A. Ferrando, E. Silvestre, P. Andr´es, J. J. Miret, and M. V. Andr´es, "Designing the properties of dispersionflattened photonic crystal fibers," Opt. Express 9, 687-697 (2001). [CrossRef] [PubMed]
  4. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002). [PubMed]
  5. K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003). [CrossRef] [PubMed]
  6. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, andM. V. Andres, "Donor and acceptor guided modes in photonic crystal fibers," Opt. Lett. 25, 1328-1330 (2000). [CrossRef]
  7. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003). [CrossRef] [PubMed]
  8. J. Wang, M. Gao, C. Jiang, andW. Hu, "Design and parametric amplification analysis of dispersion-flat photonic crystal fibers," Chinese Opt. Lett. 3, 380-382 (2005).
  9. K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004). [CrossRef] [PubMed]
  10. K. Saitoh, N. J. Florous, and M. Koshiba, "Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach," Opt. Lett. 31, 26-28 (2006). [CrossRef] [PubMed]
  11. N. J. Florous, K. Saitoh, andM. Koshiba, "The role of artificial defects for engineering large effective mode area, flat chromatic dispersion and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms," Opt. Express 14, 901-913 (2006). [CrossRef] [PubMed]
  12. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005). [CrossRef] [PubMed]
  13. T.-L. Wu and C.-H. Chao, "A Novel Ultraflattened Dispersion Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 67-69 (2005). [CrossRef]
  14. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890- 3895 (2005). [CrossRef] [PubMed]
  15. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. F´evrier, P. Roy, J.-L. Auguste, and J.-M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005). [CrossRef] [PubMed]
  16. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  17. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002). [CrossRef]
  18. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006). [CrossRef] [PubMed]
  19. C. Zhang, G. Kai, Z. Wang, T. Sun, C. Wang, Y. Liu,W. Zhang, J. Liu, S. Yuan, and X. Dong, "Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal," Opt. Lett. 30, 2372-2374 (2005). [CrossRef] [PubMed]
  20. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, "Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006). [CrossRef] [PubMed]
  21. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06um in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006). [CrossRef] [PubMed]
  22. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  23. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004). [CrossRef] [PubMed]
  24. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional micostructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004). [CrossRef]
  25. K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005). [CrossRef]
  26. L. Xiao,W. Jin,M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005). [CrossRef] [PubMed]
  27. M. Sasaki, T. Ando, S. Nogawa, and K. Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys. 41, 4350-4355 (2002). [CrossRef]
  28. K. M. Gundu, M. Brio, and J. V. Moloney, "A mixed high-order vector finite element method for waveguides: Convergence and spurious mode studies," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 18, 351-364 (2005).
  29. J. R. Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
  30. E. C. M. P. Steinvurzel, E. D. Moore and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited