OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7014–7023

Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique

Zhenguo Wang, Zhijia Yuan, Hongyu Wang, and Yingtian Pan  »View Author Affiliations


Optics Express, Vol. 14, Issue 16, pp. 7014-7023 (2006)
http://dx.doi.org/10.1364/OE.14.007014


View Full Text Article

Enhanced HTML    Acrobat PDF (1837 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple pixel shift technique is proposed to double the spectral sampling rate and enhance the signal to noise ratio of spectral-domain optical coherence tomography (SDOCT) in the 1.3um wavelength range. Both theoretical analysis and experimental comparison are presented. The results show that interpixel shifted SDOCT can not only double the depth of field of SDOCT image but also eliminate the artifacts induced by aliasing effect, thus improving image contrast in areas with large depths (e.g., Δz≥1.5mm). If combined with endoscopic OCT, this technique has the potential to enhance in vivo diagnosis of biological tissues that require a larger field of view in the axial direction, such as cartilage degeneration and bladder tumors with deep asperities or invaginations.

© 2006 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Image Processing

History
Original Manuscript: May 11, 2006
Revised Manuscript: July 17, 2006
Manuscript Accepted: July 17, 2006
Published: August 7, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Zhenguo Wang, Zhijia Yuan, Hongyu Wang, and Yingtian Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7014


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889 (2003). [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067 (2003). [CrossRef] [PubMed]
  3. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734 (2005). [CrossRef] [PubMed]
  4. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159 (2005). [CrossRef] [PubMed]
  5. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652 (2005). [CrossRef] [PubMed]
  6. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225 (2006). [CrossRef] [PubMed]
  7. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201 (2003). [CrossRef] [PubMed]
  8. M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers," Opt. Lett. 28, 2162 (2003). [CrossRef] [PubMed]
  9. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147 (2005). [CrossRef] [PubMed]
  10. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10 (2005). [CrossRef] [PubMed]
  11. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171 (2004). [CrossRef] [PubMed]
  12. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483 (2005). [CrossRef] [PubMed]
  13. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156 (2004). [CrossRef] [PubMed]
  14. B. Cense, and N. A. Nassif, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435 (2004). [CrossRef] [PubMed]
  15. J. Zhang, W. G. Jung, J. S. Nelson, and Z. P. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033 (2004). [CrossRef] [PubMed]
  16. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m," Opt. Express 13, 3931 (2005). [CrossRef] [PubMed]
  17. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Spectral domain second-harmonic optical coherence tomography," Opt. Lett. 30, 2391 (2005). [CrossRef] [PubMed]
  18. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004). [CrossRef]
  19. Z. G. Wang, H. Adler, D. Chan, A. Jain, H. K. Xie, Z. L. Wu, and Y. T. Pan, "Cystoscopic optical coherence tomography for urinary bladder imaging in vivo," Proceedings of SPIE: Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X 6079, 91 (2006).
  20. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B-Opt.Phys. 17, 1795 (2000). [CrossRef]
  21. A. V. Oppenheim, and R. W. Schafer, Discrete-Time Signal Processing (Prentice Hall, 1989).
  22. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength," Opt. Express 11, 3598 (2003). [CrossRef] [PubMed]
  23. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited